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Introduction

Capacities and the Choquet integral (Choquet, 1953) have been
widely used in decision making
In multicriteria decision making, the Choquet integral acts as a very
versatile aggregation model able to capture complex decision
behaviors
Identification of a model based on the Choquet integral implies to
solve an optimization problem with an exponential number of
variables and constraints
The use of k-additive capacities (G., 1997) permits to have a
polynomial number of variables, however the number of constraints
is still exponential
By expressing a 2-additive capacity as a convex combination of
vertices, Hüllermeier et al. (2013, 2020) have circumvented the
problem, making the number of constraints polynomial too.
In this paper, we extend this mechanism to 3-additive capacities,
thanks to results we establish on the convex hull of k-additive 0-1
capacities.
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Basic definitions

N = {1, . . . , n}, n > 3

A (normalized) capacity on N is a mapping v : 2N → [0, 1] s.t.
v(∅) = 0, v(N) = 1 and satisfying monotonicity: v(S) 6 v(T )
whenever S ⊆ T .

M(n): set of (normalized) capacities on N. It is a closed convex
polytope of dimension 2n − 2.

For any S ∈ 2N \ {∅}, the unanimity game uS is a capacity defined
by uS(T ) = 1 if T ⊇ S and 0 otherwise.

Any capacity v can be expressed as a unique l.c. of unanimity
games:

v =
∑

S⊆N,S 6=∅

mv (S)uS

For 1 6 k 6 n, a capacity v is (at most) k-additive if mv(S) = 0
whenever |S | > k .

Mk(n): set of (at most) k-additive capacities (closed convex
polytope of dimension d(n, k) :=

(

n
1

)

+
(

n
2

)

+ · · ·+
(

n
k

)

− 1)
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The identification problem

Models of preference based on capacities (using the Choquet
integral, etc.) are identified through an optimization problem whose
variables are the coefficients v(S) or equivalently mv (S), S ⊆ N,
with n2n−1 monotonicity constraints.
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The identification problem

Models of preference based on capacities (using the Choquet
integral, etc.) are identified through an optimization problem whose
variables are the coefficients v(S) or equivalently mv (S), S ⊆ N,
with n2n−1 monotonicity constraints.

When k-additive capacities are used, the number of variables
becomes polynomial: d(n, k). However, the number of constraints is
still n2n−1.
n 5 10 15 20 25
Number of mono-
tonicity constraints

80 5 120 245 760 10 485 760 419 430 400
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The identification problem

Alternative way: as M2(n) is a polytope, use its vertices to
represent v as a convex combination:

v =
∑

i∈N

wi u{i} +
∑

{i ,j}⊆N

wi ,j u{i ,j} +
∑

{i ,j}⊆N

wi ,j u{i ,j}

where u{i}, u{i ,j} are unanimity games, and
u{i ,j} := u{i} + u{j} − u{i ,j}, {i , j} ⊆ N
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The identification problem

Alternative way: as M2(n) is a polytope, use its vertices to
represent v as a convex combination:

v =
∑

i∈N

wi u{i} +
∑

{i ,j}⊆N

wi ,j u{i ,j} +
∑

{i ,j}⊆N

wi ,j u{i ,j}

where u{i}, u{i ,j} are unanimity games, and
u{i ,j} := u{i} + u{j} − u{i ,j}, {i , j} ⊆ N

Then the variables are the coefficients wi ,wi ,j ,wi ,j , and the
constraints are:

wi > 0, wi ,j ,wi ,j > 0 (∀i , j)
∑

i∈N

wi +
∑

{i ,j}⊆N

wi ,j +
∑

{i ,j}⊆N

wi ,j = 1.

Möbius representation vertices representation

Number of unknowns n(n+1)
2

n2

Number of monotonicity conditions n 2n−1 n2

Number of normalization conditions 2 1
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The situation beyond k = 2

M(n)

6/16 M. Grabisch and C. Labreuche c©2022 The convex hull of k-additive 0-1 capacities



The situation beyond k = 2

Vertices of M(n): all 0-1
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Number: the Dedekind number
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The situation beyond k = 2

Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number

Vertices of M1(n): all additive
0-1 capacities (0-1 probability
measures)

M(n)

M1(n)
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The situation beyond k = 2

Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number

Vertices of M1(n): all additive
0-1 capacities (0-1 probability
measures)

Vertices of M2(n): all
2-additive 0-1 capacities.
Number: n2 M(n)

M1(n)

M2(n)
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capacities (simple games).
Number: the Dedekind number

Vertices of M1(n): all additive
0-1 capacities (0-1 probability
measures)

Vertices of M2(n): all
2-additive 0-1 capacities.
Number: n2

Vertices of M3(n): unknown!
(but includes all 3-additive 0-1
capacities). Number: unknown!

M(n)

M1(n)

M2(n)

M3(n)
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The situation beyond k = 2

Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number

Vertices of M1(n): all additive
0-1 capacities (0-1 probability
measures)

Vertices of M2(n): all
2-additive 0-1 capacities.
Number: n2

Vertices of M3(n): unknown!
(but includes all 3-additive 0-1
capacities). Number: unknown!

Idea: use only 0-1 3-additive
capacities: M0−1

3 (n) and take
the convex hull conv(M0−1

3 (n))

M(n)

M1(n)

M2(n)

M3(n)

M0−1
3 (n)
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Volume of M(n)

As M(n) is an order polytope, its volume is given by

V (M(n)) =
e(2N)

(2n − 2)!

where e(2N ) is the number of linear extensions of (2N ,⊆) (no
closed-form formula; known till n = 8; see sequence A046873 in OEIS)
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Volume of M(n)

As M(n) is an order polytope, its volume is given by

V (M(n)) =
e(2N)

(2n − 2)!

where e(2N ) is the number of linear extensions of (2N ,⊆) (no
closed-form formula; known till n = 8; see sequence A046873 in OEIS)

n e(2N )

1 1
2 2
3 48
4 1680384
5 14807804035657359360
6 141377911697227887117195970316200795630205476957716480
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Volume of M(n)

n V (M(n))

1 1
2 1
3 0.0666667
4 0.0000192753
5 0.0000000000000558252
6 0.00000000000000000000000000000000449247
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Vertices of M(n)

The vertices of M(n) are known to be the 0-1 capacities (simple
games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {∅,N},⊆).
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The vertices of M(n) are known to be the 0-1 capacities (simple
games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {∅,N},⊆).

The number of antichains in (2N ,⊆) is the Dedekind number M(n)
(no closed-form formula; known till n = 8, see sequence A000372 in
OEIS), therefore the number of vertices is M(n)− 2.
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Vertices of M(n)

The vertices of M(n) are known to be the 0-1 capacities (simple
games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {∅,N},⊆).

The number of antichains in (2N ,⊆) is the Dedekind number M(n)
(no closed-form formula; known till n = 8, see sequence A000372 in
OEIS), therefore the number of vertices is M(n)− 2.

n M(n)− 2

1 1
2 4
3 18
4 166
5 7579
6 7828352
7 2414682040996
8 56130437228687557907786
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Vertices of conv(M0−1
k (n))

conv(M0−1
k (n)) is the convex hull of all 0-1 valued k-additive

capacities.
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Vertices of conv(M0−1
k (n))

conv(M0−1
k (n)) is the convex hull of all 0-1 valued k-additive

capacities.

Even if its vertices are all k-additive 0-1 capacities, their explicit
expression is difficult to obtain.
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Vertices of conv(M0−1
k (n))

conv(M0−1
k (n)) is the convex hull of all 0-1 valued k-additive

capacities.

Even if its vertices are all k-additive 0-1 capacities, their explicit
expression is difficult to obtain.

The key result to obtain them is: Take an antichain A = {A1, . . . ,Aℓ},
its corresponding simple game has Möbius transform:

mv (S) =
∑

I⊆{1,...,ℓ}
I 6=∅⋃

i∈I Ai=S

(−1)|I |+1 (S ⊆ N,S 6= ∅)

with the convention
∑

∅
= 0.

10/16 M. Grabisch and C. Labreuche c©2022 The convex hull of k-additive 0-1 capacities



Vertices of conv(M0−1
k (n))

conv(M0−1
k (n)) is the convex hull of all 0-1 valued k-additive

capacities.

Even if its vertices are all k-additive 0-1 capacities, their explicit
expression is difficult to obtain.

The key result to obtain them is: Take an antichain A = {A1, . . . ,Aℓ},
its corresponding simple game has Möbius transform:

mv (S) =
∑

I⊆{1,...,ℓ}
I 6=∅⋃

i∈I Ai=S

(−1)|I |+1 (S ⊆ N,S 6= ∅)

with the convention
∑

∅
= 0.

Lemma

Consider an antichain A in (2N \ {∅,N},⊆) such that |
⋃

A| 6 k. Then
the capacity generated by A belongs to M0−1

k (n).
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Characterization of vertices of conv(M0−1
3 (n))

Theorem

Let A be an antichain on (2N \ {∅,N},⊆), with support |
⋃

A| > 3, and
denote by vA the corresponding 0-1 capacity. Then vA ∈ M0−1

3 (n) iff

1 No element of A has a cardinality larger than 3 and smaller than 2.

2 If all elements of A have cardinality 2, then A has the form

A = {12, 34, 13},

i.e., a partition of the support in two blocks and a set formed by an
element of each block (support of size 4).

3 If A has an element of cardinality 3, say, 123, then A has the form

A = {123, 14, 24, 34}

(support of size 4).

4 The size of the support of A is at most 4.
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Characterization of vertices of conv(M0−1
3 (n))

antichain vertex number

{{i}} ui n

{{i , j}} uij
(

n

2

)

{{i}, {j}} ui + uj − uij =: uij

(

n

2

)

{{i}, {j}, {ℓ}} ui + uj + uℓ − uij − uiℓ − ujℓ + uijℓ =: uijℓ

(

n

3

)

{{i}, {j , ℓ}} ui + ujℓ − uijℓ =: ui,jℓ n
(

n−1
2

)

{{i , j}, {j , ℓ}} uij + ujℓ − uijℓ =: uij,jℓ (n − 2)
(

n

2

)

{{i , j}, {j , ℓ}, {i , ℓ}} uij + ujℓ + uiℓ − 2uijℓ =: uij,jℓ,iℓ

(

n

3

)

{{i , j , ℓ}} uijℓ
(

n

3

)

{{i , j}, {s, t}, {i , s}} uij + ust + uis − uijs − uist =: uij,st,is 2
(

n

2

)(

n−2
2

)

{{i , j , s}, {i , t}, {j , t}, {s, t}} uijs + uit + ujt + ust − uijt − uist − ujst =: uijs,t (n − 3)
(

n

3

)

Total number of vertices = n
(

n +
1

6
(n − 1)(n − 2)(4n − 3)

)

(this is in O(n4)).
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Facets

The facets of Mk(n) are known. They correspond to the n2n−1

monotonicity inequalities:

∑

T⊆S

mv (T ∪ {i}) > 0, ∀i ∈ N ∀S ⊆ N \ {i}
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Facets

The facets of Mk(n) are known. They correspond to the n2n−1

monotonicity inequalities:

∑

T⊆S

mv (T ∪ {i}) > 0, ∀i ∈ N ∀S ⊆ N \ {i}

By contrast, the facets of conv(M0−1
k (n)) are unknown. However:

Theorem

Any facet of Mk(n) is a facet of conv(M0−1
k (n)).
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The case n = 4, k = 3

M3(4) and conv(M0−1
3 (4)) are both 13-dimensional polytopes
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The case n = 4, k = 3

M3(4) and conv(M0−1
3 (4)) are both 13-dimensional polytopes

By the above results, conv(M0−1
3 (4)) has 68 vertices, while M3(4)

has 32 facets (explicit expression known).
By using PORTA1, it is possible to find the facets of
conv(M0−1

3 (4)), as well as all vertices of M3(4). We find:

M3(4) conv(M0−1
3 (4))

vertices 303 ⊇ 68
facets 32 ⊆ 222

By using VINCI2 and LRS3, it is possible to compute the volumes of
M3(4) and conv(M0−1

3 (4)) and their ratio. We find:

Volume of M3(4) V1=0.000019927

Volume of conv(M0−1
3 (4)) V2 =0.000019046

ratio V2/V1 0.95581
1POlyhedron Representation Transformation Algorithm, by Thomas Christof and

Andreas Loebel https://porta.zib.de/
2by Benno Büeler and Andreas Enge https://www.multiprecision.org/vinci/
3by David Avis http://cgm.cs.mcgill.ca/∼avis/C/lrslib/
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Back to the identification problem

The previous results permit to use the set 3-additive capacities in
conv(M0−1

3 (n)) in modelling preferences, inducing an optimization
problem in O(n4), both for the number of variables and the number
of constraints
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The previous results permit to use the set 3-additive capacities in
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3 (n)) in modelling preferences, inducing an optimization
problem in O(n4), both for the number of variables and the number
of constraints

The loss of generality, i.e., the volume of M3(n) \ conv(M
0−1
3 (n)),

seems to be small (relative volume about 5% for n = 4)
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The previous results permit to use the set 3-additive capacities in
conv(M0−1

3 (n)) in modelling preferences, inducing an optimization
problem in O(n4), both for the number of variables and the number
of constraints

The loss of generality, i.e., the volume of M3(n) \ conv(M
0−1
3 (n)),

seems to be small (relative volume about 5% for n = 4)

Case of the Choquet integral: it is easy to get the expression of the
Choquet integral for each capacity in M0−1

3 (n), remembering that
the Choquet integral is linear w.r.t. the capacity:

∫

f d(v + αv ′) =

∫

f dv + α

∫

f dv ′
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Back to the identification problem

The previous results permit to use the set 3-additive capacities in
conv(M0−1

3 (n)) in modelling preferences, inducing an optimization
problem in O(n4), both for the number of variables and the number
of constraints

The loss of generality, i.e., the volume of M3(n) \ conv(M
0−1
3 (n)),

seems to be small (relative volume about 5% for n = 4)

Case of the Choquet integral: it is easy to get the expression of the
Choquet integral for each capacity in M0−1

3 (n), remembering that
the Choquet integral is linear w.r.t. the capacity:

∫

f d(v + αv ′) =

∫

f dv + α

∫

f dv ′

the Choquet integral w.r.t. a unanimity game is given by
∫

f duS = min
x∈S

f (x)
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antichain Choquet integral

{{i}} C1(x) = xi
{{i , j}} C2(x) = xi ∧ xj = OS

2
1(xi , xj )

{{i}, {j}} C3(x) = xi + xj − xi ∧ xj = xi ∨ xj = OS
2
2(xi , xj )

{{i}, {j}, {ℓ}} C4(x) = xi + xj + xℓ − xi ∧ xj − xi ∧ xℓ − xj ∧ xℓ
+xi ∧ xj ∧ xℓ = xi ∨ xj ∨ xℓ = OS

3
3(xi , xj , xℓ)

{{i}, {j , ℓ}} C5(x) = xi + xj ∧ xℓ − xi ∧ xj ∧ xℓ
{{i , j}, {j , ℓ}} C6(x) = xi ∧ xj + xj ∧ xℓ − xi ∧ xj ∧ xℓ

{{i , j}, {j , ℓ}, {i , ℓ}} C7(x) = xi ∧ xj + xj ∧ xℓ + xj ∧ xℓ − 2 xi ∧ xj ∧ xℓ
= OS

3
2(xi , xj , xℓ)

{{i , j , ℓ}} C8(x) = xi ∧ xj ∧ xℓ = OS
3
1(xi , xj , xℓ)

{{i , j}, {s, t}, {i , s}} C9(x) = xi ∧ xj + xs ∧ xt + xi ∧ xs − xi ∧ xj ∧ xs
−xi ∧ xs ∧ xt

{{i , j , s}, {i , t}, {j , t}, {s, t}} C10(x) = xi ∧ xj ∧ xs + xi ∧ xt + xj ∧ xt + xs ∧ xt
−xi ∧ xj ∧ xt − xi ∧ xs ∧ xt − xj ∧ xs ∧ xt
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