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Capacities and the Choquet integral (Choquet, 1953) have been
widely used in decision making

In multicriteria decision making, the Choquet integral acts as a very
versatile aggregation model able to capture complex decision
behaviors

Identification of a model based on the Choquet integral implies to
solve an optimization problem with an exponential number of
variables and constraints

The use of k-additive capacities (G., 1997) permits to have a
polynomial number of variables, however the number of constraints
is still exponential
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In multicriteria decision making, the Choquet integral acts as a very
versatile aggregation model able to capture complex decision
behaviors

Identification of a model based on the Choquet integral implies to
solve an optimization problem with an exponential number of
variables and constraints

The use of k-additive capacities (G., 1997) permits to have a
polynomial number of variables, however the number of constraints
is still exponential

By expressing a 2-additive capacity as a convex combination of
vertices, Hiillermeier et al. (2013, 2020) have circumvented the
problem, making the number of constraints polynomial too.
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Capacities and the Choquet integral (Choquet, 1953) have been
widely used in decision making

In multicriteria decision making, the Choquet integral acts as a very
versatile aggregation model able to capture complex decision
behaviors

Identification of a model based on the Choquet integral implies to
solve an optimization problem with an exponential number of
variables and constraints

The use of k-additive capacities (G., 1997) permits to have a
polynomial number of variables, however the number of constraints
is still exponential

By expressing a 2-additive capacity as a convex combination of
vertices, Hiillermeier et al. (2013, 2020) have circumvented the
problem, making the number of constraints polynomial too.

In this paper, we extend this mechanism to 3-additive capacities,
thanks to results we establish on the convex hull of k-additive 0-1
capacities.
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e N={1,...,n}, n>3
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® A (normalized) capacity on N is a mapping v : 2N — [0,1] s.t.
v(@) =0, v(N) =1 and satisfying monotonicity: v(5) < v(T)
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o N={1,...,n},n>3

® A (normalized) capacity on N is a mapping v : 2N — [0,1] s.t.
v(@) =0, v(N) =1 and satisfying monotonicity: v(5) < v(T)
whenever S C T.

@ M(n): set of (normalized) capacities on N. It is a closed convex
polytope of dimension 2" — 2.

@ For any S € 2V\ {@}, the unanimity game us is a capacity defined
by us(T)=1if T O S and 0 otherwise.
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N=A{L,...,n},n>3

A (normalized) capacity on N is a mapping v : 2V — [0,1] s.t.
v(@) =0, v(N) =1 and satisfying monotonicity: v(5) < v(T)
whenever S C T.

M(n): set of (normalized) capacities on N. It is a closed convex
polytope of dimension 2" — 2.

For any S € 2N\ {@}, the unanimity game us is a capacity defined
by us(T)=1if T O S and 0 otherwise.

Any capacity v can be expressed as a unique l.c. of unanimity

games:
v = Z m"(S)us
SCN,5#2
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A (normalized) capacity on N is a mapping v : 2V — [0,1] s.t.
v(@) =0, v(N) =1 and satisfying monotonicity: v(5) < v(T)
whenever S C T.

M(n): set of (normalized) capacities on N. It is a closed convex
polytope of dimension 2" — 2.

For any S € 2N\ {@}, the unanimity game us is a capacity defined
by us(T)=1if T O S and 0 otherwise.

Any capacity v can be expressed as a unique l.c. of unanimity

games:
v = Z m"(S)us
SCN,5#2

For 1 < k < n, a capacity v is (at most) k-additive if m¥(S) =0
whenever |S| > k.
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N=A{L,...,n},n>3

A (normalized) capacity on N is a mapping v : 2V — [0,1] s.t.
v(@) =0, v(N) =1 and satisfying monotonicity: v(5) < v(T)
whenever S C T.

M(n): set of (normalized) capacities on N. It is a closed convex
polytope of dimension 2" — 2.

For any S € 2N\ {@}, the unanimity game us is a capacity defined
by us(T)=1if T O S and 0 otherwise.

Any capacity v can be expressed as a unique l.c. of unanimity

v = Z m"(S)us
SCN,5#2
For 1 < k < n, a capacity v is (at most) k-additive if m¥(S) =0
whenever |S| > k.
M (n): set of (at most) k-additive capacities (closed convex
polytope of dimension d(n, k) := ({) + (5) +---+ (}) — 1)

games:
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The identification problem

@ Models of preference based on capacities (using the Choquet
integral, etc.) are identified through an optimization problem whose
variables are the coefficients v(S) or equivalently m¥(S), S C N,
with n2"~1 monotonicity constraints.
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The identification problem

@ Models of preference based on capacities (using the Choquet
integral, etc.) are identified through an optimization problem whose
variables are the coefficients v(S) or equivalently m¥(S), S C N,
with n2"~1 monotonicity constraints.

@ When k-additive capacities are used, the number of variables
becomes polynomial: d(n, k). However, the number of constraints is
still 271,

n 5 10 15 20 25

Number of mono- | 80 | 5120 | 245760 | 10485760 | 419430400

tonicity constraints
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The identification problem

@ Alternative way: as M>(n) is a polytope, use its vertices to
represent v as a convex combination:

v=>) wiug+ Y wijugi+ Y Wiy
ieN {iJ}CN {iJ}CN

where ugjy, ug; jy are unanimity games, and

Uiigy = Uy +ugy — vy, ULPEN
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The identification problem

@ Alternative way: as M>(n) is a polytope, use its vertices to
represent v as a convex combination:

v=D wiugyt D wijugg o Y Wiy
ieN {iJ}CN {iJ}CN
where ugjy, ug; jy are unanimity games, and
Uiy = ugy T ugy — gy, AL SN
@ Then the variables are the coefficients w;, w; j, w;j, and the
constraints are:
W,}O, WIJ7W—W>0 (VIL/)

ZW,'—I— Z w;ij + Z W’j:]..

ien {ijycn {ij}CN

Mobius representation | vertices representation
Number of unknowns @ n?
Number of monotonicity conditions n2m 1 n’
Number of normalization conditions 2 1
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The situation beyond k = 2

6/16 M. Grabisch and C. Labreuche (©2022 The convex hull of k-additive 0-1 capacities



The situation beyond k = 2

@ Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number
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The situation beyond k = 2

@ Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number

@ Vertices of Mj(n): all additive
0-1 capacities (0-1 probability
measures)
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measures) Ms(n)
@ Vertices of My(n): all Mo (n)
2-additive 0-1 capacities. Mi(n
Number: n? M(n)

@ Vertices of M3(n): unknown!
(but includes all 3-additive 0-1
capacities). Number: unknown!
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The situation beyond k = 2

@ Vertices of M(n): all 0-1
capacities (simple games).
Number: the Dedekind number

@ Vertices of Mj(n): all additive
0-1 capacities (0-1 probability

measures) Ms(n)
@ Vertices of My(n): all Mo (n)
2-additive 0-1 capacities. Mi(n
Number: n? M(n)

@ Vertices of M3(n): unknown!
(but includes all 3-additive 0-1
capacities). Number: unknown!

@ ldea: use only 0-1 3-additive
capacities: M3 1(n) and take
the convex hull conv(M3*(n))
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Volume of M(n)

As M(n) is an order polytope, its volume is given by

e(2M)

V(M(n)) = @ =)

where e(2V) is the number of linear extensions of (2V, C) (no
closed-form formula; known till n = 8; see sequence A046873 in OEIS)
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Volume of M(n)

As M(n) is an order polytope, its volume is given by

e(2M)

V(M(n)) = @ =)

where e(2V) is the number of linear extensions of (2V, C) (no
closed-form formula; known till n = 8; see sequence A046873 in OEIS)

n e(2M)
1 1
2 2
3 48
4 1680384
5 14807804035657359360
6 | 141377911697227887117195970316200795630205476957716480
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Volume of M(n)

V(M(n))

1

1

0.0666667

0.0000192753

0.0000000000000558252
0.00000000000000000000000000000000449247

SOl WN RS
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Vertices of M(n)

@ The vertices of M(n) are known to be the 0-1 capacities (simple

games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {@, N}, C).
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Vertices of M(n)

@ The vertices of M(n) are known to be the 0-1 capacities (simple
games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {@, N}, C).

@ The number of antichains in (2V, C) is the Dedekind number M(n)
(no closed-form formula; known till n = 8, see sequence A000372 in
OEIS), therefore the number of vertices is M(n) — 2.
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Vertices of M(n)

@ The vertices of M(n) are known to be the 0-1 capacities (simple
games), which are in bijection with the antichains (= set of minimal
winning coalitions) of (2N \ {@, N}, C).

@ The number of antichains in (2V, C) is the Dedekind number M(n)
(no closed-form formula; known till n = 8, see sequence A000372 in
OEIS), therefore the number of vertices is M(n) — 2.

M(n) — 2

1

4

18

166

7579

7828352

2414682040996
56130437228687557907786

WO ~NO OB~ WN S
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Vertices of conv(M{ *(n))

o conv(M)1(n)) is the convex hull of all 0-1 valued k-additive
capacities.
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Vertices of conv(M{ *(n))

o conv(M)1(n)) is the convex hull of all 0-1 valued k-additive
capacities.

@ Even if its vertices are all k-additive 0-1 capacities, their explicit
expression is difficult to obtain.
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Vertices of conv(M{ *(n))

o conv(M)1(n)) is the convex hull of all 0-1 valued k-additive

capacities.

@ Even if its vertices are all k-additive 0-1 capacities, their explicit

expression is difficult to obtain.

The key result to obtain them is: Take an antichain A = {Ay,... A/},
its corresponding simple game has Mobius transform:

m(s)= Y (-

1C{1,....0}
1#£2
UiEIAf:S

with the convention >, = 0.
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Vertices of conv(M{ *(n))

o conv(M)1(n)) is the convex hull of all 0-1 valued k-additive
capacities.

@ Even if its vertices are all k-additive 0-1 capacities, their explicit
expression is difficult to obtain.

The key result to obtain them is: Take an antichain A = {Ay,... A/},
its corresponding simple game has Mobius transform:

m'(S)= Y (D' (SCN,S+#0)

with the convention >, = 0.

Consider an antichain A in (2N \ {@, N}, C) such that || JA| < k. Then
the capacity generated by A belongs to M?(_l(n).
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Characterization of vertices of conv(M3 *(n))

Let A be an antichain on (2N \ {@, N}, C), with support || JA| > 3, and
denote by v, the corresponding 0-1 capacity. Then vy € Mg_l(n) iff
Q No element of A has a cardinality larger than 3 and smaller than 2.
Q If all elements of A have cardinality 2, then A has the form

A = (12,34, T3},

i.e., a partition of the support in two blocks and a set formed by an
element of each block (support of size 4).

© If A has an element of cardinality 3, say, 123, then A has the form
A = {123, 14,23, 34)

(support of size 4).
© The size of the support of A is at most 4.
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Characterization of vertices of 001'1\7(/\/1?_1(/7))

i, sh A th Uy th {s t})

antichain vertex number
it} U n
{i gt} U (3)
{ik 1} U + Uy — Uy = Tj (3)
(5)

Hit U}
SURIR3S
ISV RTASS,
ik U3, {0 63}
i, 01}
{{i,j} {s; t}, {i; s}}

Up -ty + Uy — iy — U — g + g =2 Uije
up o Uz — g = Uije
i+ Uy — g = Uyje

Uy + U+ U — 2ugp =1 Ujj jeie

Uiz
g + g+ g — U — Uy = Uit is
U & Ug + U + Usp — Uy — Uiy — Ly =1 Ujjs, ¢t

Total number of vertices = n(n + %(n —1)(n—2)(4n — 3)) (this is in O(n")).
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The facets of M(n) are known. They correspond to the n2"~!
monotonicity inequalities:

Y o mY(Tu{i})=0, VieNVSCN\({i}
TCS
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The facets of M(n) are known. They correspond to the n2"~!
monotonicity inequalities:

Y o mY(Tu{i})=0, VieNVSCN\({i}
TCS

By contrast, the facets of conv(M9*(n)) are unknown. However:

Any facet of My(n) is a facet of conv(M%~t(n)).
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o M;3(4) and conv(M31(4)) are both 13-dimensional polytopes



Thecase n=4, k=3

o M;3(4) and conv(M31(4)) are both 13-dimensional polytopes
o By the above results, conv(M$ 1(4)) has 68 vertices, while M3(4)
has 32 facets (explicit expression known).
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o M;3(4) and conv(M31(4)) are both 13-dimensional polytopes

o By the above results, conv(M$ 1(4)) has 68 vertices, while M3(4)
has 32 facets (explicit expression known).

@ By using PORTA!, it is possible to find the facets of
conv(M31(4)), as well as all vertices of M3(4). We find:

Ms3(4) conv(M31(4))

vertices 303 D 63

facets 32 - 222




Thecase n=4, k=3

o M;3(4) and conv(M31(4)) are both 13-dimensional polytopes

o By the above results, conv(M$ 1(4)) has 68 vertices, while M3(4)
has 32 facets (explicit expression known).

@ By using PORTA!, it is possible to find the facets of
conv(M31(4)), as well as all vertices of M3(4). We find:

Ms3(4) conv(M31(4))

vertices 303 D 63

facets 32 - 222

@ By using VINCI? and LRS3, it is possible to compute the volumes of
M3(4) and conv(M31(4)) and their ratio. We find:

Volume of M3(4) V1=0.000019927
Volume of conv(M3 1(4)) | V2 =0.000019046
ratio Vo/V4 0.95581

1POlyhedron Representation Transformation Algorithm, by Thomas Christof and

Andreas Loebel https://porta.zib.de/
2by Benno Biieler and Andreas Enge https://www.multiprecision.org/vinci/

3by David Avis http://cgn.cs.mcgill.ca/~avis/C/1rslib/
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Back to the identification problem

@ The previous results permit to use the set 3-additive capacities in
conv(M31(n)) in modelling preferences, inducing an optimization
problem in O(n*), both for the number of variables and the number
of constraints

15/16 M. Grabisch and C. Labreuche (©2022 The convex hull of k-additive 0-1 capacities



Back to the identification problem

@ The previous results permit to use the set 3-additive capacities in
conv(M31(n)) in modelling preferences, inducing an optimization
problem in O(n*), both for the number of variables and the number
of constraints

® The loss of generality, i.e., the volume of Ms(n) \ conv(M3~1(n)),
seems to be small (relative volume about 5% for n = 4)
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@ The previous results permit to use the set 3-additive capacities in
conv(M31(n)) in modelling preferences, inducing an optimization
problem in O(n*), both for the number of variables and the number
of constraints

® The loss of generality, i.e., the volume of Ms(n) \ conv(M3~1(n)),
seems to be small (relative volume about 5% for n = 4)
@ Case of the Choquet integral: it is easy to %et the expression of the

Choquet integral for each capacity in Mg_ (n), remembering that
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Back to the identification problem

@ The previous results permit to use the set 3-additive capacities in
conv(M31(n)) in modelling preferences, inducing an optimization
problem in O(n*), both for the number of variables and the number
of constraints

® The loss of generality, i.e., the volume of Ms(n) \ conv(M3~1(n)),
seems to be small (relative volume about 5% for n = 4)

@ Case of the Choquet integral: it is easy to %et the expression of the
Choquet integral for each capacity in Mg_ (n), remembering that

o the Choquet integral is linear w.r.t. the capacity:

/fd(v+ozv’):/fdv—|—oz/fdv’
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Back to the identification problem

@ The previous results permit to use the set 3-additive capacities in
conv(M31(n)) in modelling preferences, inducing an optimization
problem in O(n*), both for the number of variables and the number
of constraints

® The loss of generality, i.e., the volume of Ms(n) \ conv(M3~1(n)),
seems to be small (relative volume about 5% for n = 4)

@ Case of the Choquet integral: it is easy to %et the expression of the
Choquet integral for each capacity in Mg_ (n), remembering that

o the Choquet integral is linear w.r.t. the capacity:

/fd(v+ozv’):/fdv—|—oz/fdv’

o the Choquet integral w.r.t. a unanimity game is given by

/fdus = min f(x)
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antichain

Choquet integral

i
{{i.J1}
URS
SURTIRS

it U 3}
SRy,
gk U3, {0, 63}

i, 01}
it s, t}, {i s}}

g sk i th Ut} {s, t3}

G(x) =xi

Go(x) = X Ax; = OSi(x;, x)
G(xX)=xi+x —xi Axp=x Vx5 = 0S3(x, x;)
GX)=xi+x+xe—xiANxj—xi ANxe — X A\ X¢
= 083(x;, ), x¢)

X

+xi AN X; AN xe =X V XV Xg
G(x) =xi +x Axe — xi A Xxj A\ xe
Go(x) = xi Axj+ X A xe — xi AXxj A\ X
GX)=xiAxi+x Axe+x Axe —2x A Xxj A Xe
= 0S3(x;, xj, xe)
Gs(x) = xi A xj A xe = OS3(x;, x5, x¢)
G(X) =X AX 4+ Xxs Axe + X AXs — X AXj A Xs
—Xi N\ Xs \ Xt
Cio(x) = xi AXj A Xs + Xi Axe + Xj A Xe + Xs A X
—Xi N Xj N Xt — Xi N Xs N Xt — Xj N\ Xs N\ Xt
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