On the convex hull of *k*-additive 0-1 capacities and its application to model identification in decision making

Michel GRABISCH^{*a,b*} and Christophe LABREUCHE^{*c,d*}

^aUniversité Paris I Panthéon-Sorbonne, Centre d'Economie de la Sorbonne ^bParis School of Economics, Paris, France ^cThales Research & Technology, Palaiseau, France ^dSINCLAIR AI Lab. Palaiseau, France

• Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of *k*-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential

コット くほう くほう

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of *k*-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential
- By expressing a 2-additive capacity as a convex combination of vertices, Hüllermeier et al. (2013, 2020) have circumvented the problem, making the number of constraints polynomial too.

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of *k*-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential
- By expressing a 2-additive capacity as a convex combination of vertices, Hüllermeier et al. (2013, 2020) have circumvented the problem, making the number of constraints polynomial too.
- In this paper, we extend this mechanism to 3-additive capacities, thanks to results we establish on the convex hull of k-additive 0-1 capacities.

•
$$N = \{1, \ldots, n\}, n \ge 3$$

□ > 《 E > 《 E >

æ

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0,1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0, 1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.
- M(n): set of (normalized) capacities on N. It is a closed convex polytope of dimension 2ⁿ − 2.

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0, 1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^n 2$.
- For any S ∈ 2^N \ {Ø}, the unanimity game u_S is a capacity defined by u_S(T) = 1 if T ⊇ S and 0 otherwise.

伺下 イヨト イヨト

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0, 1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.
- M(n): set of (normalized) capacities on N. It is a closed convex polytope of dimension 2ⁿ − 2.
- For any S ∈ 2^N \ {Ø}, the unanimity game u_S is a capacity defined by u_S(T) = 1 if T ⊇ S and 0 otherwise.
- Any capacity v can be expressed as a unique l.c. of unanimity games:

$$v = \sum_{S \subseteq N, S \neq \emptyset} m^{v}(S) u_{S}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0, 1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.
- M(n): set of (normalized) capacities on N. It is a closed convex polytope of dimension 2ⁿ − 2.
- For any S ∈ 2^N \ {Ø}, the unanimity game u_S is a capacity defined by u_S(T) = 1 if T ⊇ S and 0 otherwise.
- Any capacity v can be expressed as a unique l.c. of unanimity games:

$$v = \sum_{S \subseteq N, S \neq \emptyset} m^{v}(S) u_{S}$$

For 1 ≤ k ≤ n, a capacity v is (at most) k-additive if m^v(S) = 0 whenever |S| > k.

イロト イポト イヨト イヨト

- $N = \{1, \ldots, n\}, n \ge 3$
- A (normalized) capacity on N is a mapping $v : 2^N \to [0, 1]$ s.t. $v(\emptyset) = 0, v(N) = 1$ and satisfying monotonicity: $v(S) \leq v(T)$ whenever $S \subseteq T$.
- M(n): set of (normalized) capacities on N. It is a closed convex polytope of dimension 2ⁿ − 2.
- For any S ∈ 2^N \ {Ø}, the unanimity game u_S is a capacity defined by u_S(T) = 1 if T ⊇ S and 0 otherwise.
- Any capacity v can be expressed as a unique l.c. of unanimity games:

$$v = \sum_{S \subseteq N, S \neq \emptyset} m^{v}(S) u_{S}$$

- For 1 ≤ k ≤ n, a capacity v is (at most) k-additive if m^v(S) = 0 whenever |S| > k.
- $\mathcal{M}_k(n)$: set of (at most) k-additive capacities (closed convex polytope of dimension $d(n,k) := \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{k} 1$

 Models of preference based on capacities (using the Choquet integral, etc.) are identified through an optimization problem whose variables are the coefficients v(S) or equivalently m^v(S), S ⊆ N, with n2ⁿ⁻¹ monotonicity constraints.

- Models of preference based on capacities (using the Choquet integral, etc.) are identified through an optimization problem whose variables are the coefficients v(S) or equivalently m^v(S), S ⊆ N, with n2ⁿ⁻¹ monotonicity constraints.
- When k-additive capacities are used, the number of variables becomes polynomial: d(n, k). However, the number of constraints is still n2ⁿ⁻¹.

n	5	10	15	20	25
Number of mono-	80	5 1 2 0	245 760	10 485 760	419 430 400
tonicity constraints					

The identification problem

• Alternative way: as $\mathcal{M}_2(n)$ is a polytope, use its vertices to represent v as a convex combination:

$$v = \sum_{i \in N} w_i \ u_{\{i\}} + \sum_{\{i,j\} \subseteq N} w_{i,j} \ u_{\{i,j\}} + \sum_{\{i,j\} \subseteq N} \overline{w_{i,j}} \ \overline{u_{\{i,j\}}}$$

where $u_{\{i\}}$, $u_{\{i,j\}}$ are unanimity games, and

$$\overline{u_{\{i,j\}}} := u_{\{i\}} + u_{\{j\}} - u_{\{i,j\}}, \quad \{i,j\} \subseteq N$$

The identification problem

• Alternative way: as $\mathcal{M}_2(n)$ is a polytope, use its vertices to represent v as a convex combination:

$$v = \sum_{i \in \mathbb{N}} w_i \ u_{\{i\}} + \sum_{\{i,j\} \subseteq \mathbb{N}} w_{i,j} \ u_{\{i,j\}} + \sum_{\{i,j\} \subseteq \mathbb{N}} \overline{w_{i,j}} \ \overline{u_{\{i,j\}}}$$

where $u_{\{i\}}$, $u_{\{i,j\}}$ are unanimity games, and

$$\overline{u_{\{i,j\}}} := u_{\{i\}} + u_{\{j\}} - u_{\{i,j\}}, \quad \underline{\{i,j\}} \subseteq N$$

• Then the variables are the coefficients $w_i, w_{i,j}, \overline{w_{i,j}}$, and the constraints are:

$$w_i \ge 0, \quad w_{i,j}, \overline{w_{i,j}} \ge 0 \quad (\forall i,j)$$
$$\sum_{i \in N} w_i + \sum_{\{i,j\} \subseteq N} w_{i,j} + \sum_{\{i,j\} \subseteq N} \overline{w_{i,j}} = 1.$$

	Möbius representation	vertices representation
Number of unknowns	$\frac{n(n+1)}{2}$	n ²
Number of monotonicity conditions	$n 2^{n-1}$	n ²
Number of normalization conditions	2	1

æ

э.

 Vertices of *M*(*n*): all 0-1 capacities (simple games).
Number: the Dedekind number

- Vertices of *M*(*n*): all 0-1 capacities (simple games).
 Number: the Dedekind number
- Vertices of M₁(n): all additive 0-1 capacities (0-1 probability measures)

- Vertices of *M*(*n*): all 0-1 capacities (simple games).
 Number: the Dedekind number
- Vertices of M₁(n): all additive 0-1 capacities (0-1 probability measures)
- Vertices of $\mathcal{M}_2(n)$: all 2-additive 0-1 capacities. Number: n^2

- Vertices of M(n): all 0-1 capacities (simple games).
 Number: the Dedekind number
- Vertices of M₁(n): all additive 0-1 capacities (0-1 probability measures)
- Vertices of $\mathcal{M}_2(n)$: all 2-additive 0-1 capacities. Number: n^2
- Vertices of M₃(n): unknown! (but includes all 3-additive 0-1 capacities). Number: unknown!

- Vertices of M(n): all 0-1 capacities (simple games).
 Number: the Dedekind number
- Vertices of M₁(n): all additive 0-1 capacities (0-1 probability measures)
- Vertices of M₂(n): all 2-additive 0-1 capacities. Number: n²
- Vertices of M₃(n): unknown! (but includes all 3-additive 0-1 capacities). Number: unknown!
- Idea: use only 0-1 3-additive capacities: M₃⁰⁻¹(n) and take the convex hull conv(M₃⁰⁻¹(n))

Volume of $\mathcal{M}(n)$

As $\mathcal{M}(n)$ is an *order polytope*, its volume is given by

$$V(\mathcal{M}(n)) = \frac{e(2^N)}{(2^n-2)!}$$

where $e(2^N)$ is the number of linear extensions of $(2^N, \subseteq)$ (no closed-form formula; known till n = 8; see sequence A046873 in OEIS)

向下 イヨト イヨト

Volume of $\mathcal{M}(n)$

As $\mathcal{M}(n)$ is an *order polytope*, its volume is given by

$$V(\mathcal{M}(n)) = \frac{e(2^N)}{(2^n-2)!}$$

where $e(2^N)$ is the number of linear extensions of $(2^N, \subseteq)$ (no closed-form formula; known till n = 8; see sequence A046873 in OEIS)

n	$e(2^N)$
1	1
2	2
3	48
4	1680384
5	14807804035657359360
6	141377911697227887117195970316200795630205476957716480

向下 イヨト イヨト

n	$V(\mathcal{M}(n))$
1	1
2	1
3	0.0666667
4	0.0000192753
5	0.00000000000558252
6	0.0000000000000000000000000000000000000

● ▶ 《 ミ ▶

⊸र ≣⇒

æ

Vertices of $\mathcal{M}(n)$

The vertices of *M*(*n*) are known to be the 0-1 capacities (simple games), which are in bijection with the antichains (= set of minimal winning coalitions) of (2^N \ {Ø, N}, ⊆).

伺下 イヨト イヨト

Vertices of $\mathcal{M}(n)$

- The vertices of *M*(*n*) are known to be the 0-1 capacities (simple games), which are in bijection with the antichains (= set of minimal winning coalitions) of (2^N \ {Ø, N}, ⊆).
- The number of antichains in (2^N, ⊆) is the *Dedekind number* M(n) (no closed-form formula; known till n = 8, see sequence A000372 in OEIS), therefore the number of vertices is M(n) 2.

・吊り ・ヨン ・ヨン ・ヨ

Vertices of $\mathcal{M}(n)$

- The vertices of *M*(*n*) are known to be the 0-1 capacities (simple games), which are in bijection with the antichains (= set of minimal winning coalitions) of (2^N \ {Ø, N}, ⊆).
- The number of antichains in (2^N, ⊆) is the *Dedekind number* M(n) (no closed-form formula; known till n = 8, see sequence A000372 in OEIS), therefore the number of vertices is M(n) 2.

п	M(n) - 2
1	1
2	4
3	18
4	166
5	7579
6	7828352
7	2414682040996
8	56130437228687557907786

conv(\$\mathcal{M}_k^{0-1}(n)\$) is the convex hull of all 0-1 valued k-additive capacities.

□→ ★ 三→ ★ 三→

- conv(\$\mathcal{M}_k^{0-1}(n)\$) is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all *k*-additive 0-1 capacities, their explicit expression is difficult to obtain.

- conv(\$\mathcal{M}_k^{0-1}(n)\$) is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all *k*-additive 0-1 capacities, their explicit expression is difficult to obtain.

The key result to obtain them is: Take an antichain $\mathcal{A} = \{A_1, \ldots, A_\ell\}$, its corresponding simple game has Möbius transform:

$$m^{\mathsf{v}}(S) = \sum_{\substack{I \subseteq \{1, \dots, \ell\} \\ I \neq \varnothing \\ \bigcup_{i \in I} A_i = S}} (-1)^{|I|+1} \qquad (S \subseteq N, S \neq \emptyset)$$

with the convention $\sum_{\varnothing} = 0$.

伺下 イヨト イヨト

- conv(\$\mathcal{M}_k^{0-1}(n)\$) is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all *k*-additive 0-1 capacities, their explicit expression is difficult to obtain.

The key result to obtain them is: Take an antichain $\mathcal{A} = \{A_1, \ldots, A_\ell\}$, its corresponding simple game has Möbius transform:

$$m^{\nu}(S) = \sum_{\substack{I \subseteq \{1, \dots, \ell\} \\ I \neq \emptyset \\ \bigcup_{i \in I} A_i = S}} (-1)^{|I|+1} \qquad (S \subseteq N, S \neq \emptyset)$$

with the convention $\sum_{\varnothing} = 0$.

Lemma

Consider an antichain \mathcal{A} in $(2^N \setminus \{\emptyset, N\}, \subseteq)$ such that $|\bigcup \mathcal{A}| \leq k$. Then the capacity generated by \mathcal{A} belongs to $\mathcal{M}_k^{0-1}(n)$.

Characterization of vertices of $conv(\mathcal{M}_3^{0-1}(n))$

Theorem

Let \mathcal{A} be an antichain on $(2^N \setminus \{\emptyset, N\}, \subseteq)$, with support $|\bigcup \mathcal{A}| > 3$, and denote by $v_{\mathcal{A}}$ the corresponding 0-1 capacity. Then $v_{\mathcal{A}} \in \mathcal{M}_3^{0-1}(n)$ iff

- **1** No element of \mathcal{A} has a cardinality larger than 3 and smaller than 2.
- **2** If all elements of \mathcal{A} have cardinality 2, then \mathcal{A} has the form

$$\mathcal{A} = \{\overline{12}, \overline{34}, \overline{13}\},\$$

i.e., a partition of the support in two blocks and a set formed by an element of each block (support of size 4).

③ If A has an element of cardinality 3, say, $\overline{123}$, then A has the form

$$\mathcal{A} = \{\overline{123}, \overline{14}, \overline{24}, \overline{34}\}$$

(support of size 4).

The size of the support of A is at most 4.

Characterization of vertices of $conv(\mathcal{M}_3^{0-1}(n))$

antichain	vertex	number
$\{\{i\}\}$	u _ī	п
$\{\{i, j\}\}$	u _{ii}	$\binom{n}{2}$
$\{\{i\}, \{j\}\}$	$u_{\overline{i}} + u_{\overline{i}} - u_{\overline{ij}} =: \overline{u}_{ij}$	$\binom{n}{2}$
$\{\{i\},\{j\},\{\ell\}\}$	$u_{\overline{i}} + u_{\overline{j}} + u_{\overline{\ell}} - u_{\overline{ij}} - u_{\overline{i\ell}} - u_{\overline{j\ell}} + u_{\overline{ij\ell}} =: \overline{u}_{ij\ell}$	$\binom{n}{3}$
$\{\{i\}, \{j, \ell\}\}$	$u_{\overline{i}} + u_{\overline{j\ell}} - u_{\overline{ij\ell}} =: \overline{u}_{i,j\ell}$	$n\binom{n-1}{2}$
$\{\{i, j\}, \{j, \ell\}\}$	$u_{\overline{ij}} + u_{\overline{j\ell}} - u_{\overline{ij\ell}} =: \overline{u}_{ij,j\ell}$	$(n-2)\binom{n}{2}$
$\{\{i, j\}, \{j, \ell\}, \{i, \ell\}\}$	$u_{\overline{ij}} + u_{\overline{i\ell}} + u_{\overline{i\ell}} - 2u_{\overline{ij\ell}} =: \overline{u}_{ij,j\ell,i\ell}$	$\binom{n}{3}$
$\{\{i, j, \ell\}\}$	$u_{ij\ell}$	$\binom{n}{3}$
$\{\{i, j\}, \{s, t\}, \{i, s\}\}$	$u_{\overline{ij}} + u_{\overline{st}} + u_{\overline{is}} - u_{\overline{ijs}} - u_{\overline{ist}} =: \overline{u}_{ij,st,is}$	$2\binom{n}{2}\binom{n-2}{2}$
$\{\{i, j, s\}, \{i, t\}, \{j, t\}, \{s, t\}\}$	$u_{\overline{ijs}} + u_{\overline{it}} + u_{\overline{jt}} + u_{\overline{st}} - u_{\overline{ijt}} - u_{\overline{ist}} - u_{\overline{jst}} =: \overline{u}_{ijs,t}$	$(n-3)\binom{n}{3}$
Total number of vertices = $n\left(n + \frac{1}{6}(n-1)(n-2)(4n-3)\right)$ (this is in $O(n^4)$).		

回 と く ヨ と く ヨ と

The facets of $\mathcal{M}_k(n)$ are known. They correspond to the $n2^{n-1}$ monotonicity inequalities:

$$\sum_{T\subseteq S} m^{\mathsf{v}}(T\cup\{i\}) \ge 0, \qquad \forall i\in \mathsf{N} \ \forall S\subseteq \mathsf{N}\setminus\{i\}$$

・ロト ・回ト ・ヨト ・ヨト

The facets of $\mathcal{M}_k(n)$ are known. They correspond to the $n2^{n-1}$ monotonicity inequalities:

$$\sum_{T\subseteq S} m^{\mathsf{v}}(T\cup\{i\}) \ge 0, \qquad \forall i\in N \; \forall S\subseteq N\setminus\{i\}$$

By contrast, the facets of $conv(\mathcal{M}_k^{0-1}(n))$ are unknown. However:

Theorem

Any facet of $\mathcal{M}_k(n)$ is a facet of $\operatorname{conv}(\mathcal{M}_k^{0-1}(n))$.

く 聞 と く き と く き と

• $\mathcal{M}_3(4)$ and $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ are both 13-dimensional polytopes

- $\mathcal{M}_3(4)$ and $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ has 68 vertices, while $\mathcal{M}_3(4)$ has 32 facets (explicit expression known).

- $\mathcal{M}_3(4)$ and $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ has 68 vertices, while $\mathcal{M}_3(4)$ has 32 facets (explicit expression known).
- By using PORTA¹, it is possible to find the facets of conv(M₃⁰⁻¹(4)), as well as all vertices of M₃(4). We find:

	$\mathcal{M}_3(4)$		$\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$
vertices	303	\supseteq	68
facets	32	\subseteq	222

- $\mathcal{M}_3(4)$ and $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ has 68 vertices, while $\mathcal{M}_3(4)$ has 32 facets (explicit expression known).
- By using PORTA¹, it is possible to find the facets of conv(M₃⁰⁻¹(4)), as well as all vertices of M₃(4). We find:

11:			ş()
	$\mathcal{M}_3(4)$		$\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$
vertices	303	\supseteq	68
facets	32	\subseteq	222

• By using VINCl² and LRS³, it is possible to compute the volumes of $\mathcal{M}_3(4)$ and $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$ and their ratio. We find:

Volume of $\mathcal{M}_3(4)$	$V_1 = 0.000019927$
Volume of $\operatorname{conv}(\mathcal{M}_3^{0-1}(4))$	$V_2 = 0.000019046$
ratio V_2/V_1	0.95581

¹POlyhedron Representation Transformation Algorithm, by Thomas Christof and Andreas Loebel https://porta.zib.de/

• The previous results permit to use the set 3-additive capacities in $\operatorname{conv}(\mathcal{M}_3^{0-1}(n))$ in modelling preferences, inducing an optimization problem in $O(n^4)$, both for the number of variables and the number of constraints

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}(\mathcal{M}_3^{0-1}(n))$ in modelling preferences, inducing an optimization problem in $O(n^4)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of M₃(n) \ conv(M₃⁰⁻¹(n)), seems to be small (relative volume about 5% for n = 4)

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}(\mathcal{M}_3^{0-1}(n))$ in modelling preferences, inducing an optimization problem in $O(n^4)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of M₃(n) \ conv(M₃⁰⁻¹(n)), seems to be small (relative volume about 5% for n = 4)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_3^{0-1}(n)$, remembering that

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}(\mathcal{M}_3^{0-1}(n))$ in modelling preferences, inducing an optimization problem in $O(n^4)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of M₃(n) \ conv(M₃⁰⁻¹(n)), seems to be small (relative volume about 5% for n = 4)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_3^{0-1}(n)$, remembering that

• the Choquet integral is linear w.r.t. the capacity:

$$\int f \,\mathrm{d}(\mathbf{v} + \alpha \mathbf{v}') = \int f \,\mathrm{d}\mathbf{v} + \alpha \int f \,\mathrm{d}\mathbf{v}'$$

伺下 イヨト イヨト

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}(\mathcal{M}_3^{0-1}(n))$ in modelling preferences, inducing an optimization problem in $O(n^4)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of M₃(n) \ conv(M₃⁰⁻¹(n)), seems to be small (relative volume about 5% for n = 4)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_3^{0-1}(n)$, remembering that

• the Choquet integral is linear w.r.t. the capacity:

$$\int f \,\mathrm{d}(\mathbf{v} + \alpha \mathbf{v}') = \int f \,\mathrm{d}\mathbf{v} + \alpha \int f \,\mathrm{d}\mathbf{v}'$$

• the Choquet integral w.r.t. a unanimity game is given by

$$\int f \, \mathrm{d} u_S = \min_{x \in S} f(x)$$

(1) マン・ション・

antichain	Choquet integral
$\{\{i\}\}$	$C_1(x) = x_i$
$\{\{i, j\}\}$	$C_2(x) = x_i \wedge x_j = \mathrm{OS}_1^2(x_i, x_j)$
$\{\{i\}, \{j\}\}$	$C_3(x) = x_i + x_j - x_i \wedge x_j = x_i \vee x_j = \mathrm{OS}_2^2(x_i, x_j)$
$\{\{i\}, \{j\}, \{\ell\}\}$	$C_4(x) = x_i + x_j + x_\ell - x_i \wedge x_j - x_i \wedge x_\ell - x_j \wedge x_\ell$
	$+x_i \wedge x_j \wedge x_\ell = x_i \vee x_j \vee x_\ell = \mathrm{OS}_3^3(x_i, x_j, x_\ell)$
$\{\{i\},\{j,\ell\}\}$	$C_5(x) = x_i + x_j \wedge x_\ell - x_i \wedge x_j \wedge x_\ell$
$\{\{i, j\}, \{j, \ell\}\}$	$C_6(x) = x_i \wedge x_j + x_j \wedge x_\ell - x_i \wedge x_j \wedge x_\ell$
$\{\{i, j\}, \{j, \ell\}, \{i, \ell\}\}$	$C_7(x) = x_i \wedge x_j + x_j \wedge x_\ell + x_j \wedge x_\ell - 2 x_i \wedge x_j \wedge x_\ell$
	$= \mathrm{OS}_2^3(x_i, x_j, x_\ell)$
$\{\{i, j, \ell\}\}$	$\mathcal{C}_8(x) = x_i \wedge x_j \wedge x_\ell = \mathrm{OS}_1^3(x_i, x_j, x_\ell)$
$\{\{i, j\}, \{s, t\}, \{i, s\}\}$	$C_9(x) = x_i \wedge x_j + x_s \wedge x_t + x_i \wedge x_s - x_i \wedge x_j \wedge x_s$
	$-x_i \wedge x_s \wedge x_t$
$\{\{i, j, s\}, \{i, t\}, \{j, t\}, \{s, t\}\}$	$C_{10}(x) = x_i \wedge x_j \wedge x_s + x_i \wedge x_t + x_j \wedge x_t + x_s \wedge x_t$
	$-x_i \wedge x_j \wedge x_t - x_i \wedge x_s \wedge x_t - x_j \wedge x_s \wedge x_t$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ