On the convex hull of k-additive $0-1$ capacities and its application to model identification in decision making

Michel GRABISCH ${ }^{a, b}$ and Christophe LABREUCHE ${ }^{c, d}$
${ }^{a}$ Université Paris I Panthéon-Sorbonne, Centre d'Economie de la Sorbonne
${ }^{b}$ Paris School of Economics, Paris, France
${ }^{\text {c }}$ Thales Research \& Technology, Palaiseau, France ${ }^{d}$ SINCLAIR AI Lab, Palaiseau, France

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of k-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of k-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential
- By expressing a 2-additive capacity as a convex combination of vertices, Hüllermeier et al. $(2013,2020)$ have circumvented the problem, making the number of constraints polynomial too.

Introduction

- Capacities and the Choquet integral (Choquet, 1953) have been widely used in decision making
- In multicriteria decision making, the Choquet integral acts as a very versatile aggregation model able to capture complex decision behaviors
- Identification of a model based on the Choquet integral implies to solve an optimization problem with an exponential number of variables and constraints
- The use of k-additive capacities (G., 1997) permits to have a polynomial number of variables, however the number of constraints is still exponential
- By expressing a 2-additive capacity as a convex combination of vertices, Hüllermeier et al. $(2013,2020)$ have circumvented the problem, making the number of constraints polynomial too.
- In this paper, we extend this mechanism to 3-additive capacities, thanks to results we establish on the convex hull of k-additive 0-1 capacities.

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^{n}-2$.

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^{n}-2$.
- For any $S \in 2^{N} \backslash\{\varnothing\}$, the unanimity game u_{S} is a capacity defined by $u_{S}(T)=1$ if $T \supseteq S$ and 0 otherwise.

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^{n}-2$.
- For any $S \in 2^{N} \backslash\{\varnothing\}$, the unanimity game u_{S} is a capacity defined by $u_{S}(T)=1$ if $T \supseteq S$ and 0 otherwise.
- Any capacity v can be expressed as a unique I.c. of unanimity games:

$$
v=\sum_{S \subseteq N, S \neq \varnothing} m^{v}(S) u_{S}
$$

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^{n}-2$.
- For any $S \in 2^{N} \backslash\{\varnothing\}$, the unanimity game u_{S} is a capacity defined by $u_{S}(T)=1$ if $T \supseteq S$ and 0 otherwise.
- Any capacity v can be expressed as a unique l.c. of unanimity games:

$$
v=\sum_{S \subseteq N, S \neq \varnothing} m^{v}(S) u_{S}
$$

- For $1 \leqslant k \leqslant n$, a capacity v is (at most) k-additive if $m^{v}(S)=0$ whenever $|S|>k$.

Basic definitions

- $N=\{1, \ldots, n\}, n \geqslant 3$
- A (normalized) capacity on N is a mapping $v: 2^{N} \rightarrow[0,1]$ s.t. $v(\varnothing)=0, v(N)=1$ and satisfying monotonicity: $v(S) \leqslant v(T)$ whenever $S \subseteq T$.
- $\mathcal{M}(n)$: set of (normalized) capacities on N. It is a closed convex polytope of dimension $2^{n}-2$.
- For any $S \in 2^{N} \backslash\{\varnothing\}$, the unanimity game u_{S} is a capacity defined by $u_{S}(T)=1$ if $T \supseteq S$ and 0 otherwise.
- Any capacity v can be expressed as a unique l.c. of unanimity games:

$$
v=\sum_{S \subseteq N, S \neq \varnothing} m^{v}(S) u_{S}
$$

- For $1 \leqslant k \leqslant n$, a capacity v is (at most) k-additive if $m^{v}(S)=0$ whenever $|S|>k$.
- $\mathcal{M}_{k}(n)$: set of (at most) k-additive capacities (closed convex polytope of dimension $\left.d(n, k):=\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{k}-1\right)$

The identification problem

- Models of preference based on capacities (using the Choquet integral, etc.) are identified through an optimization problem whose variables are the coefficients $v(S)$ or equivalently $m^{v}(S), S \subseteq N$, with $n 2^{n-1}$ monotonicity constraints.

The identification problem

- Models of preference based on capacities (using the Choquet integral, etc.) are identified through an optimization problem whose variables are the coefficients $v(S)$ or equivalently $m^{v}(S), S \subseteq N$, with $n 2^{n-1}$ monotonicity constraints.
- When k-additive capacities are used, the number of variables becomes polynomial: $d(n, k)$. However, the number of constraints is still $n 2^{n-1}$.

n	5	10	15	20	25
Number of mono- tonicity constraints	80	5120	245760	10485760	419430400

The identification problem

- Alternative way: as $\mathcal{M}_{2}(n)$ is a polytope, use its vertices to represent v as a convex combination:

$$
v=\sum_{i \in N} w_{i} u_{\{i\}}+\sum_{\{i, j\} \subseteq N} w_{i, j} u_{\{i, j\}}+\sum_{\{i, j\} \subseteq N} \overline{w_{i, j}} \overline{u_{\{i, j\}}}
$$

where $u_{\{i\}}, u_{\{i, j\}}$ are unanimity games, and

$$
\overline{u_{\{i, j\}}}:=u_{\{i\}}+u_{\{j\}}-u_{\{i, j\}}, \quad\{i, j\} \subseteq N
$$

The identification problem

- Alternative way: as $\mathcal{M}_{2}(n)$ is a polytope, use its vertices to represent v as a convex combination:

$$
v=\sum_{i \in N} w_{i} u_{\{i\}}+\sum_{\{i, j\} \subseteq N} w_{i, j} u_{\{i, j\}}+\sum_{\{i, j\} \subseteq N} \overline{w_{i, j}} \overline{u_{\{i, j\}}}
$$

where $u_{\{i\}}, u_{\{i, j\}}$ are unanimity games, and

$$
\overline{u_{\{i, j\}}}:=u_{\{i\}}+u_{\{j\}}-u_{\{i, j\}}, \quad\{i, j\} \subseteq N
$$

- Then the variables are the coefficients $w_{i}, w_{i, j}, \overline{w_{i, j}}$, and the constraints are:

$$
\begin{aligned}
& w_{i} \geqslant 0, \quad w_{i, j}, \overline{w_{i, j}} \geqslant 0 \quad(\forall i, j) \\
& \sum_{i \in N} w_{i}+\sum_{\{i, j\} \subseteq N} w_{i, j}+\sum_{\{i, j\} \subseteq N} \overline{w_{i, j}}=1 .
\end{aligned}
$$

	Möbius representation	vertices representation
Number of unknowns	$\frac{n(n+1)}{2}$	n^{2}
Number of monotonicity conditions	$n 2^{n-1}$	n^{2}
Number of normalization conditions	2	1

The situation beyond $k=2$

The situation beyond $k=2$

- Vertices of $\mathcal{M}(n)$: all 0-1
capacities (simple games).
Number: the Dedekind number

The situation beyond $k=2$

- Vertices of $\mathcal{M}(n)$: all 0-1 capacities (simple games). Number: the Dedekind number
- Vertices of $\mathcal{M}_{1}(n)$: all additive $0-1$ capacities ($0-1$ probability measures)

The situation beyond $k=2$

- Vertices of $\mathcal{M}(n)$: all 0-1 capacities (simple games). Number: the Dedekind number
- Vertices of $\mathcal{M}_{1}(n)$: all additive $0-1$ capacities ($0-1$ probability measures)
- Vertices of $\mathcal{M}_{2}(n)$: all 2-additive 0-1 capacities. Number: n^{2}

The situation beyond $k=2$

- Vertices of $\mathcal{M}(n)$: all 0-1 capacities (simple games). Number: the Dedekind number
- Vertices of $\mathcal{M}_{1}(n)$: all additive 0-1 capacities (0-1 probability measures)
- Vertices of $\mathcal{M}_{2}(n)$: all 2-additive 0-1 capacities. Number: n^{2}
- Vertices of $\mathcal{M}_{3}(n)$: unknown! (but includes all 3-additive 0-1
 capacities). Number: unknown!

The situation beyond $k=2$

- Vertices of $\mathcal{M}(n)$: all 0-1 capacities (simple games). Number: the Dedekind number
- Vertices of $\mathcal{M}_{1}(n)$: all additive 0-1 capacities (0-1 probability measures)
- Vertices of $\mathcal{M}_{2}(n)$: all 2-additive 0-1 capacities. Number: n^{2}
- Vertices of $\mathcal{M}_{3}(n)$: unknown! (but includes all 3-additive 0-1 capacities). Number: unknown!

- Idea: use only 0-1 3-additive capacities: $\mathcal{M}_{3}^{0-1}(n)$ and take the convex hull $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$

Volume of $\mathcal{M}(n)$

As $\mathcal{M}(n)$ is an order polytope, its volume is given by

$$
V(\mathcal{M}(n))=\frac{e\left(2^{N}\right)}{\left(2^{n}-2\right)!}
$$

where $e\left(2^{N}\right)$ is the number of linear extensions of $\left(2^{N}, \subseteq\right)$ (no closed-form formula; known till $n=8$; see sequence A046873 in OEIS)

Volume of $\mathcal{M}(n)$

As $\mathcal{M}(n)$ is an order polytope, its volume is given by

$$
V(\mathcal{M}(n))=\frac{e\left(2^{N}\right)}{\left(2^{n}-2\right)!}
$$

where $e\left(2^{N}\right)$ is the number of linear extensions of $\left(2^{N}, \subseteq\right.$) (no closed-form formula; known till $n=8$; see sequence A046873 in OEIS)

n	$e\left(2^{N}\right)$
1	1
2	2
3	48
4	14807804035657359360
5	1680384
6	141377911697227887117195970316200795630205476957716480

Volume of $\mathcal{M}(n)$

n	$V(\mathcal{M}(n))$
1	1
2	1
3	0.0666667
4	0.0000192753
5	0.0000000000000558252
6	0.00000000000000000000000000000000449247

Vertices of $\mathcal{M}(n)$

- The vertices of $\mathcal{M}(n)$ are known to be the $0-1$ capacities (simple games), which are in bijection with the antichains ($=$ set of minimal winning coalitions) of $\left(2^{N} \backslash\{\varnothing, N\}, \subseteq\right)$.

Vertices of $\mathcal{M}(n)$

- The vertices of $\mathcal{M}(n)$ are known to be the 0-1 capacities (simple games), which are in bijection with the antichains ($=$ set of minimal winning coalitions) of $\left(2^{N} \backslash\{\varnothing, N\}, \subseteq\right)$.
- The number of antichains in $\left(2^{N}, \subseteq\right)$ is the Dedekind number $M(n)$ (no closed-form formula; known till $n=8$, see sequence A000372 in OEIS), therefore the number of vertices is $M(n)-2$.

Vertices of $\mathcal{M}(n)$

- The vertices of $\mathcal{M}(n)$ are known to be the $0-1$ capacities (simple games), which are in bijection with the antichains ($=$ set of minimal winning coalitions) of $\left(2^{N} \backslash\{\varnothing, N\}, \subseteq\right)$.
- The number of antichains in $\left(2^{N}, \subseteq\right)$ is the Dedekind number $M(n)$ (no closed-form formula; known till $n=8$, see sequence A000372 in OEIS), therefore the number of vertices is $M(n)-2$.

n	$M(n)-2$
1	1
2	4
3	18
4	166
5	7579
6	7828352
7	2414682040996
8	56130437228687557907786

Vertices of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$

- $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$ is the convex hull of all 0-1 valued k-additive capacities.

Vertices of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$

- $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$ is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all k-additive 0-1 capacities, their explicit expression is difficult to obtain.

Vertices of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$

- $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$ is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all k-additive 0-1 capacities, their explicit expression is difficult to obtain.

The key result to obtain them is: Take an antichain $\mathcal{A}=\left\{A_{1}, \ldots, A_{\ell}\right\}$, its corresponding simple game has Möbius transform:

$$
m^{\vee}(S)=\sum_{\substack{I \subseteq\{1, \ldots, \ell\} \\ I \neq \varnothing \\ \cup_{i \in I} A_{i}=S}}(-1)^{|I|+1} \quad(S \subseteq N, S \neq \varnothing)
$$

with the convention $\sum_{\varnothing}=0$.

Vertices of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$

- $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$ is the convex hull of all 0-1 valued k-additive capacities.
- Even if its vertices are all k-additive 0-1 capacities, their explicit expression is difficult to obtain.

The key result to obtain them is: Take an antichain $\mathcal{A}=\left\{A_{1}, \ldots, A_{\ell}\right\}$, its corresponding simple game has Möbius transform:

$$
m^{v}(S)=\sum_{\substack{I \subseteq\{1, \ldots, \ell\} \\ I \neq \varnothing \\ \cup_{i \in I} A_{i}=S}}(-1)^{|I|+1} \quad(S \subseteq N, S \neq \varnothing)
$$

with the convention $\sum_{\varnothing}=0$.

Lemma

Consider an antichain \mathcal{A} in $\left(2^{N} \backslash\{\varnothing, N\}, \subseteq\right)$ such that $|\bigcup \mathcal{A}| \leqslant k$. Then the capacity generated by \mathcal{A} belongs to $\mathcal{M}_{k}^{0-1}(n)$.

Characterization of vertices of $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$

Theorem

Let \mathcal{A} be an antichain on $\left(2^{N} \backslash\{\varnothing, N\}, \subseteq\right)$, with support $|\bigcup \mathcal{A}|>3$, and denote by $v_{\mathcal{A}}$ the corresponding $0-1$ capacity. Then $v_{\mathcal{A}} \in \mathcal{M}_{3}^{0-1}(n)$ iff
(1) No element of \mathcal{A} has a cardinality larger than 3 and smaller than 2 .
(2) If all elements of \mathcal{A} have cardinality 2 , then \mathcal{A} has the form

$$
\mathcal{A}=\{\overline{12}, \overline{34}, \overline{13}\}
$$

i.e., a partition of the support in two blocks and a set formed by an element of each block (support of size 4).
(3) If \mathcal{A} has an element of cardinality 3 , say, $\overline{123}$, then \mathcal{A} has the form

$$
\mathcal{A}=\{\overline{123}, \overline{14}, \overline{24}, \overline{34}\}
$$

(support of size 4).
(1) The size of the support of \mathcal{A} is at most 4 .

Characterization of vertices of $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$

antichain	vertex	number
\{\{i\}\}	$u_{\bar{i}}$	n
\{ $\{i, j\}\}$	$u_{\text {ij }}$	$\binom{n}{2}$
\{ $\{i\},\{j\}\}$	$u_{\bar{i}}+u_{\bar{j}}-u_{\overline{i j}}=: \bar{u}_{i j}$	$\binom{n}{2}$
\{ $\{i\},\{j\},\{\ell\}\}$	$u_{\bar{i}}+u_{\bar{j}}+u_{\bar{\ell}}-u_{\overline{i j}}-u_{\bar{i} \ell}-u_{\overline{j \ell}}+u_{\overline{i j \ell}}=: \bar{u}_{i j \ell}$	$\binom{n}{3}$
$\{\{i\},\{j, \ell\}\}$	$u_{\bar{i}}+u_{\bar{j} \ell}-u_{\overline{i j \ell}}=: \bar{u}_{i, j \ell}$	$n\binom{n-1}{2}$
$\{\{i, j\},\{j, \ell\}\}$	$u_{i \overline{i j}}+u_{\overline{j \ell}}-u_{i j \ell}=: \bar{u}_{i j, j \ell}$	$(n-2)\binom{n}{2}$
\{ $\{i, j\},\{j, \ell\},\{i, \ell\}\}$	$u_{\overline{i j}}+u_{\overline{j \ell}}+u_{\overline{i \ell}}-2 u_{\overline{i j \ell}}=: \bar{u}_{i j, j \ell, i \ell}$	$\binom{n}{3}$
$\{\{i, j, \ell\}\}$		$\left(\begin{array}{l}\text { (}\end{array}\right.$
$\{\{i, j\},\{s, t\},\{i, s\}\}$	$u_{\overline{i j}}+u_{s \overline{s t}}+u_{\overline{i s}}-u_{\overline{i j s}}-u_{\overline{i s t}}=: \bar{u}_{i j}, s t, i s$	$2\binom{n}{2}\binom{n-2}{2}$
$\{\{i, j, s\},\{i, t\},\{j, t\},\{s, t\}\}$	$u_{\overline{i j s}}+u_{\overline{i t}}+u_{\overline{j t}}+u_{\overline{s t}}-u_{\overline{i j t}}-u_{\overline{i s t}}-u_{\overline{j s t}}=: \bar{u}_{i j s, t}$	$(n-3)\binom{n}{3}$

Total number of vertices $=n\left(n+\frac{1}{6}(n-1)(n-2)(4 n-3)\right)$ (this is in $\left.O\left(n^{4}\right)\right)$.

Facets

The facets of $\mathcal{M}_{k}(n)$ are known. They correspond to the $n 2^{n-1}$ monotonicity inequalities:

$$
\sum_{T \sim c} m^{v}(T \cup\{i\}) \geqslant 0, \quad \forall i \in N \forall S \subseteq N \backslash\{i\}
$$

Facets

The facets of $\mathcal{M}_{k}(n)$ are known. They correspond to the $n 2^{n-1}$ monotonicity inequalities:

$$
\sum_{T \subseteq S} m^{v}(T \cup\{i\}) \geqslant 0, \quad \forall i \in N \forall S \subseteq N \backslash\{i\}
$$

By contrast, the facets of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$ are unknown. However:

Theorem

Any facet of $\mathcal{M}_{k}(n)$ is a facet of $\operatorname{conv}\left(\mathcal{M}_{k}^{0-1}(n)\right)$.

The case $n=4, k=3$

- $\mathcal{M}_{3}(4)$ and $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ are both 13-dimensional polytopes

The case $n=4, k=3$

- $\mathcal{M}_{3}(4)$ and $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ has 68 vertices, while $\mathcal{M}_{3}(4)$ has 32 facets (explicit expression known).

The case $n=4, k=3$

- $\mathcal{M}_{3}(4)$ and $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ has 68 vertices, while $\mathcal{M}_{3}(4)$ has 32 facets (explicit expression known).
- By using PORTA ${ }^{1}$, it is possible to find the facets of $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$, as well as all vertices of $\mathcal{M}_{3}(4)$. We find:

	$\mathcal{M}_{3}(4)$		$\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$
vertices	303	\supseteq	68
facets	32	\subseteq	222

The case $n=4, k=3$

- $\mathcal{M}_{3}(4)$ and $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ are both 13-dimensional polytopes
- By the above results, $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ has 68 vertices, while $\mathcal{M}_{3}(4)$ has 32 facets (explicit expression known).
- By using PORTA ${ }^{1}$, it is possible to find the facets of $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$, as well as all vertices of $\mathcal{M}_{3}(4)$. We find:

	$\mathcal{M}_{3}(4)$		$\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$
vertices	303	\supseteq	68
facets	32	\subseteq	222

- By using VINCI^{2} and LRS^{3}, it is possible to compute the volumes of $\mathcal{M}_{3}(4)$ and $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$ and their ratio. We find:

Volume of $\mathcal{M}_{3}(4)$	$V_{1}=0.000019927$
Volume of $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(4)\right)$	$V_{2}=0.000019046$
ratio V_{2} / V_{1}	0.95581

${ }^{1}$ POlyhedron Representation Transformation Algorithm, by Thomas Christof and Andreas Loebel https://porta.zib.de/
${ }^{2}$ by Benno Büeler and Andreas Enge https://www.multiprecision.org/vinci/
${ }^{3}$ by David Avis http://cgm.cs.mcgill.ca/~avis/C/lrslib/

Back to the identification problem

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$ in modelling preferences, inducing an optimization problem in $O\left(n^{4}\right)$, both for the number of variables and the number of constraints

Back to the identification problem

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$ in modelling preferences, inducing an optimization problem in $O\left(n^{4}\right)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of $\mathcal{M}_{3}(n) \backslash \operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$, seems to be small (relative volume about 5% for $n=4$)

Back to the identification problem

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$ in modelling preferences, inducing an optimization problem in $O\left(n^{4}\right)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of $\mathcal{M}_{3}(n) \backslash \operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$, seems to be small (relative volume about 5% for $n=4$)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_{3}^{0-1}(n)$, remembering that

Back to the identification problem

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$ in modelling preferences, inducing an optimization problem in $O\left(n^{4}\right)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of $\mathcal{M}_{3}(n) \backslash \operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$, seems to be small (relative volume about 5% for $n=4$)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_{3}^{0-1}(n)$, remembering that
- the Choquet integral is linear w.r.t. the capacity:

$$
\int f \mathrm{~d}\left(v+\alpha v^{\prime}\right)=\int f \mathrm{~d} v+\alpha \int f \mathrm{~d} v^{\prime}
$$

Back to the identification problem

- The previous results permit to use the set 3-additive capacities in $\operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$ in modelling preferences, inducing an optimization problem in $O\left(n^{4}\right)$, both for the number of variables and the number of constraints
- The loss of generality, i.e., the volume of $\mathcal{M}_{3}(n) \backslash \operatorname{conv}\left(\mathcal{M}_{3}^{0-1}(n)\right)$, seems to be small (relative volume about 5% for $n=4$)
- Case of the Choquet integral: it is easy to get the expression of the Choquet integral for each capacity in $\mathcal{M}_{3}^{0-1}(n)$, remembering that
- the Choquet integral is linear w.r.t. the capacity:

$$
\int f \mathrm{~d}\left(v+\alpha v^{\prime}\right)=\int f \mathrm{~d} v+\alpha \int f \mathrm{~d} v^{\prime}
$$

- the Choquet integral w.r.t. a unanimity game is given by

$$
\int f \mathrm{~d} u_{S}=\min _{x \in S} f(x)
$$

antichain	Choquet integral
\{ $\{i\}\}$	$C_{1}(x)=x_{i}$
\{ $\{i, j\}\}$	$C_{2}(x)=x_{i} \wedge x_{j}=\mathrm{OS}_{1}^{2}\left(x_{i}, x_{j}\right)$
\{ $\{i\},\{j\}\}$	$C_{3}(x)=x_{i}+x_{j}-x_{i} \wedge x_{j}=x_{i} \vee x_{j}=\mathrm{OS}_{2}^{2}\left(x_{i}, x_{j}\right)$
\{ $\{i\},\{j\},\{\ell\}\}$	$\begin{aligned} C_{4}(x)= & x_{i}+x_{j}+x_{\ell}-x_{i} \wedge x_{j}-x_{i} \wedge x_{\ell}-x_{j} \wedge x_{\ell} \\ & +x_{i} \wedge x_{j} \wedge x_{\ell}=x_{i} \vee x_{j} \vee x_{\ell}=\operatorname{OS}_{3}^{3}\left(x_{i}, x_{j}, x_{\ell}\right) \end{aligned}$
$\{\{i\},\{j, \ell\}\}$	$C_{5}(x)=x_{i}+x_{j} \wedge x_{\ell}-x_{i} \wedge x_{j} \wedge x_{\ell}$
\{ $\{i, j\},\{j, \ell\}\}$	$C_{6}(x)=x_{i} \wedge x_{j}+x_{j} \wedge x_{\ell}-x_{i} \wedge x_{j} \wedge x_{\ell}$
$\{\{i, j\},\{j, \ell\},\{i, \ell\}\}$	$\begin{aligned} C_{7}(x) & =x_{i} \wedge x_{j}+x_{j} \wedge x_{\ell}+x_{j} \wedge x_{\ell}-2 x_{i} \wedge x_{j} \wedge x_{\ell} \\ & =\operatorname{OS}_{2}^{3}\left(x_{i}, x_{j}, x_{\ell}\right) \end{aligned}$
$\{\{i, j, \ell\}\}$	$C_{8}(x)=x_{i} \wedge x_{j} \wedge x_{\ell}=\operatorname{OS}_{1}^{3}\left(x_{i}, x_{j}, x_{\ell}\right)$
$\{\{i, j\},\{s, t\},\{i, s\}\}$	$\begin{aligned} C_{9}(x)= & x_{i} \wedge x_{j}+x_{s} \wedge x_{t}+x_{i} \wedge x_{s}-x_{i} \wedge x_{j} \wedge x_{s} \\ & -x_{i} \wedge x_{s} \wedge x_{t} \end{aligned}$
$\{\{i, j, s\},\{i, t\},\{j, t\},\{s, t\}\}$	$\begin{aligned} C_{10}(x) & =x_{i} \wedge x_{j} \wedge x_{s}+x_{i} \wedge x_{t}+x_{j} \wedge x_{t}+x_{s} \wedge x_{t} \\ & -x_{i} \wedge x_{j} \wedge x_{t}-x_{i} \wedge x_{s} \wedge x_{t}-x_{j} \wedge x_{s} \wedge x_{t} \end{aligned}$

