
Random generation of capacities

Michel GRABISCHa,b, Christophe LABREUCHEc

Peiqi SUNa

aUniversité Paris I Panthéon-Sorbonne, Centre d’Economie de la
Sorbonne

bParis School of Economics, Paris, France

cThales Research and Technology, Palaiseau, France

1/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Introduction

Capacities = monotone set functions vanishing on the empty set
= monotonic TU games

Capacities are widely used in decision making and combinatorial
problems in OR

Important issue in machine learning: How to randomly generate
capacities in a uniform way?

Problem theoretically solved but intractable as soon as n = 5.

↪→ approximation methods are needed: Random Node Generator,
Markov chains, two-layer approximation (our proposal), etc.

Another problem: How to measure the performance of a capacity
generator?

2/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Outline
1. The problem of uniform random generation

2. The 2-layer approximation method

3. Measure of performance

3/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Order polytopes

(P,4): (finite) poset, with P a finite set and 4 a partial order
(reflexive, antisymmetric, transitive)

x ∈ P is maximal if x 4 y with y ∈ P implies x = y . Similarly for
minimal.

Max(P,4) and Min(P,4) (or simply Max(P),Min(P)): sets of
maximal and minimal elements of P, respectively.

The order polytope (Stanley, 1986) associated to (P,4), denoted by
O(P), is the set

O(P) = {f : P −→ [0, 1] | f (x) 6 f (y) if x 4 y}.

O(P) is a polytope of dimension p := |P|.

4/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Order polytopes

(P,4): (finite) poset, with P a finite set and 4 a partial order
(reflexive, antisymmetric, transitive)

x ∈ P is maximal if x 4 y with y ∈ P implies x = y . Similarly for
minimal.

Max(P,4) and Min(P,4) (or simply Max(P),Min(P)): sets of
maximal and minimal elements of P, respectively.

The order polytope (Stanley, 1986) associated to (P,4), denoted by
O(P), is the set

O(P) = {f : P −→ [0, 1] | f (x) 6 f (y) if x 4 y}.

O(P) is a polytope of dimension p := |P|.

4/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Order polytopes

(P,4): (finite) poset, with P a finite set and 4 a partial order
(reflexive, antisymmetric, transitive)

x ∈ P is maximal if x 4 y with y ∈ P implies x = y . Similarly for
minimal.

Max(P,4) and Min(P,4) (or simply Max(P),Min(P)): sets of
maximal and minimal elements of P, respectively.

The order polytope (Stanley, 1986) associated to (P,4), denoted by
O(P), is the set

O(P) = {f : P −→ [0, 1] | f (x) 6 f (y) if x 4 y}.

O(P) is a polytope of dimension p := |P|.

4/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Order polytopes

(P,4): (finite) poset, with P a finite set and 4 a partial order
(reflexive, antisymmetric, transitive)

x ∈ P is maximal if x 4 y with y ∈ P implies x = y . Similarly for
minimal.

Max(P,4) and Min(P,4) (or simply Max(P),Min(P)): sets of
maximal and minimal elements of P, respectively.

The order polytope (Stanley, 1986) associated to (P,4), denoted by
O(P), is the set

O(P) = {f : P −→ [0, 1] | f (x) 6 f (y) if x 4 y}.

O(P) is a polytope of dimension p := |P|.

4/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Order polytopes

(P,4): (finite) poset, with P a finite set and 4 a partial order
(reflexive, antisymmetric, transitive)

x ∈ P is maximal if x 4 y with y ∈ P implies x = y . Similarly for
minimal.

Max(P,4) and Min(P,4) (or simply Max(P),Min(P)): sets of
maximal and minimal elements of P, respectively.

The order polytope (Stanley, 1986) associated to (P,4), denoted by
O(P), is the set

O(P) = {f : P −→ [0, 1] | f (x) 6 f (y) if x 4 y}.

O(P) is a polytope of dimension p := |P|.

4/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.
Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.

Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.
Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.
Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.
Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Linear extensions

A linear extension of (P,4) is a total order 6 on P which is
compatible with 4 in the following sense: x 4 y implies x 6 y .

E (P): set of linear extensions of P; e(P) = |E (P)|.
Notation: To each linear extension 6 on P = {x1, . . . , xp}
corresponds a permutation σ on {1, . . . , p} such that
xσ(1) < · · · < xσ(p).

Each linear extension σ defines a region in O(P):

Rσ := {f ∈ O(P) | 0 6 f (xσ(1)) 6 f (xσ(2)) 6 · · · 6 f (xσ(p)) 6 1}

All regions Rσ are identical (up to a change of coordinates)
p-dimensional simplices with volume 1

p!

Vertices of Rσ are the p + 1 functions given by

0 = f (xσ(1)) = · · · = f (xσ(k)), f (xσ(k+1)) = · · · = f (xσ(p)) = 1,

k = 1, . . . , p − 1, and the two constant functions 0 and 1.

5/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:

1 Generate p numbers uniformly in [0, 1]
2 Order them in increasing order: z1 6 · · · 6 zp
3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:

1 Generate p numbers uniformly in [0, 1]
2 Order them in increasing order: z1 6 · · · 6 zp
3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:

1 Generate p numbers uniformly in [0, 1]
2 Order them in increasing order: z1 6 · · · 6 zp
3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:
1 Generate p numbers uniformly in [0, 1]

2 Order them in increasing order: z1 6 · · · 6 zp
3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:
1 Generate p numbers uniformly in [0, 1]
2 Order them in increasing order: z1 6 · · · 6 zp

3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Random generation of a point in O(P)

Based on the above facts,

Uniform random generation of a point in O(P) = uniform
random selection of a linear extension σ of P + uniform
random selection of a point in Rσ

Uniform random selection of a point f in Rσ:
1 Generate p numbers uniformly in [0, 1]
2 Order them in increasing order: z1 6 · · · 6 zp
3 Put f (xσ(1)) = z1, . . . , f (xσ(p)) = zp.

6/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)

2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

N := {1, 2, . . . , n}: a finite set of n elements

A (normalized) capacity (Choquet, 1953) on N is a set function
µ : 2N −→ [0, 1] satisfying

1 µ(∅) = 0, µ(N) = 1 (normalization)
2 S ⊆ T ⇒ µ(S) 6 µ(T) (monotonicity).

C(N): set of capacities on N

C(N) is an order polytope, whose underlying poset is
(2N \ {∅,N},⊆)

Consequence: the problem of the uniform generation of capacities is
solved!

But...

7/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

The number of linear extensions on (2N \ {∅,N}) (equal to the number
of linear extensions on (2N ,⊆) is given in the table below:

n e(2N)

1 1
2 2
3 48
4 1680384
5 14807804035657359360
6 141377911697227887117195970316200795630205476957716480

This is sequence A046873 in the Online Encyclopedia of Integer
Sequences. e(2N) is not known beyond n = 7. Some bounds are known
(Brightwell and Winkler, 1991).

8/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

The number of linear extensions on (2N \ {∅,N}) (equal to the number
of linear extensions on (2N ,⊆) is given in the table below:

n e(2N)

1 1
2 2
3 48
4 1680384
5 14807804035657359360
6 141377911697227887117195970316200795630205476957716480

This is sequence A046873 in the Online Encyclopedia of Integer
Sequences. e(2N) is not known beyond n = 7. Some bounds are known
(Brightwell and Winkler, 1991).

8/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Capacities

The number of linear extensions on (2N \ {∅,N}) (equal to the number
of linear extensions on (2N ,⊆) is given in the table below:

n e(2N)

1 1
2 2
3 48
4 1680384
5 14807804035657359360
6 141377911697227887117195970316200795630205476957716480

This is sequence A046873 in the Online Encyclopedia of Integer
Sequences. e(2N) is not known beyond n = 7. Some bounds are known
(Brightwell and Winkler, 1991).

8/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)

supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)

2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Related literature

Random Node generator (Havens and Pinar, 2017): select a subset
in 2N \ {∅,N} and draw a number in the interval imposed by
monotonicity constraints

Uniform generation of linear extensions by a Markov chain process
(Karzanov and Khachiyan, 1991)(Bubley and Dyer, 1999)

Uniform generation of linear extensions by selecting minimal
elements with a certain probability (Combarro, D́ıaz and Miranda,
2013)(Miranda and Garcia-Segador, 2019)(Combarro, Hurtado de
Saracho and D́ıaz, 2019)

Methods specific to some particular families of capacities:

2-symmetric capacities (Miranda and Garcia-Segador, 2020)
supermodular capacities (Beliakov, 2022)
2-additive capacities (Miranda and Garcia-Segador, 2020a)

9/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Random Node Generator

Algorithm:

1 L ← {∅,N}; µ(N) = 1; µ(∅) = 0

2 Pick S ∈ 2N \ L
3 Compute µmin(S) = maxT∈L,T⊆S µ(T),
µmax(S) = minT∈L,T⊇S µ(T)

4 Draw uniformly a number t in [µmin(S), µmax(S)]; µ(S)← t

5 L ← L ∪ {S}
6 Goto step 2 while L 6= 2N

Advantages: very simple and fast
Drawbacks: yields very biased distribution

10/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Random Node Generator

Algorithm:

1 L ← {∅,N}; µ(N) = 1; µ(∅) = 0

2 Pick S ∈ 2N \ L
3 Compute µmin(S) = maxT∈L,T⊆S µ(T),
µmax(S) = minT∈L,T⊇S µ(T)

4 Draw uniformly a number t in [µmin(S), µmax(S)]; µ(S)← t

5 L ← L ∪ {S}
6 Goto step 2 while L 6= 2N

Advantages: very simple and fast
Drawbacks: yields very biased distribution

10/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

The method generates a linear extension on a poset (P,4) with a
uniform distribution. Let P = {x1, . . . , xp}.

Two linear extensions σ, τ are neighbors if they differ only by a
single transposition of neighbor elements:

σ : xσ(1), . . . , xσ(k), xσ(k+1), . . . , xσ(p)

τ : xσ(1), . . . , xσ(k+1), xσ(k), . . . , xσ(p)

for some k ∈ [1, p − 1]. Denote by n(σ) the number of neighbors of
σ (at most p − 1).
The order Markov chain M is defined on the set of states E (P) with
transition probabilities:

P(σ, τ) =

1/(2p − 2) if σ, τ are neighbors

1− n(σ)/(2p − 2) if σ = τ

0 otherwise.
The order Markov chain M is ergodic time-reversible and converges
to the uniform distribution on E (P).

11/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

The method generates a linear extension on a poset (P,4) with a
uniform distribution. Let P = {x1, . . . , xp}.
Two linear extensions σ, τ are neighbors if they differ only by a
single transposition of neighbor elements:

σ : xσ(1), . . . , xσ(k), xσ(k+1), . . . , xσ(p)

τ : xσ(1), . . . , xσ(k+1), xσ(k), . . . , xσ(p)

for some k ∈ [1, p − 1]. Denote by n(σ) the number of neighbors of
σ (at most p − 1).

The order Markov chain M is defined on the set of states E (P) with
transition probabilities:

P(σ, τ) =

1/(2p − 2) if σ, τ are neighbors

1− n(σ)/(2p − 2) if σ = τ

0 otherwise.
The order Markov chain M is ergodic time-reversible and converges
to the uniform distribution on E (P).

11/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

The method generates a linear extension on a poset (P,4) with a
uniform distribution. Let P = {x1, . . . , xp}.
Two linear extensions σ, τ are neighbors if they differ only by a
single transposition of neighbor elements:

σ : xσ(1), . . . , xσ(k), xσ(k+1), . . . , xσ(p)

τ : xσ(1), . . . , xσ(k+1), xσ(k), . . . , xσ(p)

for some k ∈ [1, p − 1]. Denote by n(σ) the number of neighbors of
σ (at most p − 1).
The order Markov chain M is defined on the set of states E (P) with
transition probabilities:

P(σ, τ) =

1/(2p − 2) if σ, τ are neighbors

1− n(σ)/(2p − 2) if σ = τ

0 otherwise.

The order Markov chain M is ergodic time-reversible and converges
to the uniform distribution on E (P).

11/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

The method generates a linear extension on a poset (P,4) with a
uniform distribution. Let P = {x1, . . . , xp}.
Two linear extensions σ, τ are neighbors if they differ only by a
single transposition of neighbor elements:

σ : xσ(1), . . . , xσ(k), xσ(k+1), . . . , xσ(p)

τ : xσ(1), . . . , xσ(k+1), xσ(k), . . . , xσ(p)

for some k ∈ [1, p − 1]. Denote by n(σ) the number of neighbors of
σ (at most p − 1).
The order Markov chain M is defined on the set of states E (P) with
transition probabilities:

P(σ, τ) =

1/(2p − 2) if σ, τ are neighbors

1− n(σ)/(2p − 2) if σ = τ

0 otherwise.
The order Markov chain M is ergodic time-reversible and converges
to the uniform distribution on E (P).

11/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

Algorithm

1 Input: a poset (P,4) with P = {x1, . . . , xp}, an integer T

2 Find a linear extension σ on P
3 For i = 1 to T do:

choose at random an integer k ∈ [1, 2p − 2]
if k 6 p− 1 and not[xσ(k) ≺ xσ(k+1)] then swap xσ(k) and xσ(k+1) in σ

4 Output σ

Estimation of T to get almost uniformity: T = O(p5 log(e(P))).

12/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The Markov chain generator

Algorithm

1 Input: a poset (P,4) with P = {x1, . . . , xp}, an integer T

2 Find a linear extension σ on P
3 For i = 1 to T do:

choose at random an integer k ∈ [1, 2p − 2]
if k 6 p− 1 and not[xσ(k) ≺ xσ(k+1)] then swap xσ(k) and xσ(k+1) in σ

4 Output σ

Estimation of T to get almost uniformity: T = O(p5 log(e(P))).

12/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Outline
1. The problem of uniform random generation

2. The 2-layer approximation method

3. Measure of performance

13/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.

Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).

Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).

Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.

As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.

Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Basic idea

Let (P,4) with P = {x1, . . . , xp}.
Any linear extension xσ(1), . . . , xσ(p) satisfies xσ(1) ∈ Min(P) and
xσ(p) ∈ Max(P).
Similarly, xσ(2) ∈ Min(P \ {xσ(1)}), and xσ(p−1) ∈ Max(P \ {xσ(p)}).
Based on this observation, the probability that a linear extension of
P starts with m ∈ Min(P) (resp., ends with M ∈ Max(P)) is

Pr(m | P) =
e(P \ {m})

e(P)
; Pr(M | P) =

e(P \ {M})
e(P)

↪→ generating a linear extension amounts to choosing, according to
the correct probability given above, a minimal or a maximal element
of a poset which is diminished by one element at each step.
As this probability directly depends on e(P), the computation can
be exact only when P becomes small enough.
Idea: take the lower part of the poset for choosing minimal elements,
and the upper part for choosing maximal elements, thus neglecting
minimal and maximal elements which are outside these two subparts.

14/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.

Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k: number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality

TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k: number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k: number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)

k: number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k : number of nodes in the lower layer of TH (6)

I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k : number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

We take P = 2N \ {∅,N} and delete step by step minimal and
maximal elements. Generically, we call (H,⊆) the current poset.
Layer of H: all nodes (subsets) of same cardinality
TH : the two top layers of H. When needed, we specify TH [h, k , |I |],
where

h: number of nodes in the upper layer of TH (2)
k : number of nodes in the lower layer of TH (6)
I : set of isolated nodes in the 2nd layer ({13})

1 2 3 4

∅

12 13 14 23 3424

124 234

For y in the 2nd layer, pred(y) is the set of its predecessors in the
1st layer (similarly with succ(x), x in the 1st layer)

15/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

In a dual way, we introduce BH (denoted also BH [h′, k ′, |I ′|]), the
poset of the two bottom layers of H.

Consider a maximal element M of H belonging to TH , and a
minimal element m of H belonging to BH . We put

Pr(M | H) ≈e(TH \ {M})
e(TH)

= Pr(M | TH)

Pr(m | H) ≈e(BH \ {m})
e(BH)

= Pr(m | BH)

Rationale: If in average a node has ` predecessors in the layer just
above, a node in layer k has therefore O(`k−1) predecessors in H.
Hence, a node in the 3d layer has very little probability to become
maximal, since all its predecessors must be eliminated first, without
eliminating all nodes of the 1st layer

16/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

In a dual way, we introduce BH (denoted also BH [h′, k ′, |I ′|]), the
poset of the two bottom layers of H.

Consider a maximal element M of H belonging to TH , and a
minimal element m of H belonging to BH . We put

Pr(M | H) ≈e(TH \ {M})
e(TH)

= Pr(M | TH)

Pr(m | H) ≈e(BH \ {m})
e(BH)

= Pr(m | BH)

Rationale: If in average a node has ` predecessors in the layer just
above, a node in layer k has therefore O(`k−1) predecessors in H.
Hence, a node in the 3d layer has very little probability to become
maximal, since all its predecessors must be eliminated first, without
eliminating all nodes of the 1st layer

16/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The approximation method

In a dual way, we introduce BH (denoted also BH [h′, k ′, |I ′|]), the
poset of the two bottom layers of H.

Consider a maximal element M of H belonging to TH , and a
minimal element m of H belonging to BH . We put

Pr(M | H) ≈e(TH \ {M})
e(TH)

= Pr(M | TH)

Pr(m | H) ≈e(BH \ {m})
e(BH)

= Pr(m | BH)

Rationale: If in average a node has ` predecessors in the layer just
above, a node in layer k has therefore O(`k−1) predecessors in H.
Hence, a node in the 3d layer has very little probability to become
maximal, since all its predecessors must be eliminated first, without
eliminating all nodes of the 1st layer

16/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The algorithm

generate-linext(P, l)
Input: a poset P subset of 2N \ {∅,N}
Output: a linear extension l of P generated with a uniform distribution
H ← P; lmin← ∅; lmax ← ∅
While height of H > 2 do

Compute the basic parameters of TH : k , h, |I |
Select M ∈ TH [h, k , |I |] with probability Pr(M | TH [h, k, |I |])
Add M at the beginning of lmax
Compute the basic parameters of BH : k ′, h′, |I ′|
Select m ∈ BH [h′, k ′, |I ′|] with probability Pr(m | BH [h′, k ′, |I ′|])
Add m at the end of lmin

H ← H \ {M,m}
end while

17/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

% Now H is reduced to two layers: BH and TH coincide
While height of H = 2 do

If number of nodes in the upper layer 6 number of nodes in the lower
layer then

Select M ∈ TH [h, k , |I |] with probability Pr(M | TH [h, k, |I |])
Add M at the beginning of lmax
H ← H \ {M}

otherwise
Select m ∈ BH [h′, k ′, |I ′|] with probability Pr(m | BH [h′, k ′, |I ′|])
Add m at the end of lmin
H ← H \ {m}

end if
end while
% Now H is reduced to one layer, which is an antichain whose elements have
% the same probability
While H 6= ∅ do

Select uniformly at random an element x ∈ H
Add x at the end of lmin
H ← H \ {x}

end while
l ← lmin ; concatenate lmax to the end of l

18/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

1 2 3 4

12 13 14 23 3424

124 234123 134

(a)

1 2 3 4

12 13 14 23 3424

124123 134

(b)

2 3 4

12 13 14 23 3424

124123 134

(c)

2 3 4

12 13 14 23 3424

124123

(d)

2 3

12 13 14 23 3424

124123

(e)

2 3

12 13 14 23 3424

123

(f)

19/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

2 3

12 13 23 3424

123

(g)

2 3

12 13 23 3424

(h)

3

12 13 23 3424

(i)

12 13 23 3424

(j)

Resulting linear extension: 1, 4, 14, 2, 3, 12, 34, 24, 23, 13, 123, 124,
134, 234

20/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Computation of the probabilities

It remains to compute Pr(M | TH) and Pr(m | BH). This is made
possible through a simplifying assumption.

Definition

Let x be a node of the upper layer of TH .

1 The function fx assigns to every node y of the lower layer an integer
as follows:

fx(y) =

{
|pred(y)|, y ∈ succ(x)

0, otherwise.

2 The function nx : N→ N is defined from fx as follows: nx(r) is the
number of occurences of fx(y) = r , i.e., nx(r) = |f −1x (r)|. When
r > 0, it is the number of successors of x having r predecessors,
otherwise when r = 0 it is the number of nodes in the lower layer
which are not successors of x .

21/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Computation of the probabilities

It remains to compute Pr(M | TH) and Pr(m | BH). This is made
possible through a simplifying assumption.

Definition

Let x be a node of the upper layer of TH .

1 The function fx assigns to every node y of the lower layer an integer
as follows:

fx(y) =

{
|pred(y)|, y ∈ succ(x)

0, otherwise.

2 The function nx : N→ N is defined from fx as follows: nx(r) is the
number of occurences of fx(y) = r , i.e., nx(r) = |f −1x (r)|. When
r > 0, it is the number of successors of x having r predecessors,
otherwise when r = 0 it is the number of nodes in the lower layer
which are not successors of x .

21/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Computation of the probabilities

Definition

We say that TH is regular if nx is invariant with x , i.e., nx(r) = nx ′(r) for
every r and every two nodes x , x ′ in the upper layer.

1 2 3 4

∅

12 13 14 23 3424

124 234

n124(0) = 3 = n234(0), n124(1) = 2 = n234(1), n124(2) = 1 = n234(2),
hence the above TH is regular. Every TH closed under intersection and
balanced is regular.
Dual definitions exist for BH .

22/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Computation of the probabilities

Definition

We say that TH is regular if nx is invariant with x , i.e., nx(r) = nx ′(r) for
every r and every two nodes x , x ′ in the upper layer.

1 2 3 4

∅

12 13 14 23 3424

124 234

n124(0) = 3 = n234(0), n124(1) = 2 = n234(1), n124(2) = 1 = n234(2),
hence the above TH is regular. Every TH closed under intersection and
balanced is regular.
Dual definitions exist for BH .

22/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Computation of the probabilities

Proposition

Consider the poset TH [h, k , |I |] and suppose that it is regular. Then the
probabilities Pu(TH [h, k, |I |]) that node x of the upper layer terminates a
linear extension, and Pl(TH [h, k , |I |]) that isolated node y of the lower
layer terminates a linear extension are given by

Pu(TH [h, k, |I |]) =
1

h

∏|I ′|
i=1 (h − 1 + k − |I ′| + i)∏|I ′|

i=1 (h − 1 + k − |I ′| + i) + |I | ×
∏|I ′′|

i=1 (h − 1 + k − |I ′| + i)
∏|I|−1

i=1 (h + k − |I | + i)

Pl (TH [h, k, |I |]) =

∏|I ′′|
i=1 (h − 1 + k − |I ′| + i)

∏|I|−1
i=1 (h + k − |I | + i)∏|I ′|

i=1 (h − 1 + k − |I ′| + i) + |I | ×
∏|I ′′|

i=1 (h − 1 + k − |I ′| + i)
∏|I|−1

i=1 (h + k − |I | + i)
,

where I ′ is the set of isolated nodes in the poset TH\{x}, and I ∪ I ′′ = I ′.

23/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Outline
1. The problem of uniform random generation

2. The 2-layer approximation method

3. Measure of performance

24/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Uniform distribution of µ in C(N) does not mean that the
distribution of µ(S) for a given S is uniform!

Exact distribution of µ(S) seems to be very hard to obtain.

Denote by µ the r.v. with uniform distribution on C(N). Take a
linear extension σ and consider the associated region Rσ ⊆ C(N).

Given that µ ∈ Rσ, we know that µ(Sσ(k)) follows the distribution
of the kth order statistics on [0, 1]. It is known that the probability
density function f(k) of the kth order statistics on [0, 1] when the
underlying 2n − 2 random variables are i.i.d. and uniform is a Beta
distribution:

f(k)(u) = (2n−2)

(
2n − 3

k − 1

)
(1−u)2

n−2−kuk−1 = Beta(k, 2n + k −1)

25/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Uniform distribution of µ in C(N) does not mean that the
distribution of µ(S) for a given S is uniform!

Exact distribution of µ(S) seems to be very hard to obtain.

Denote by µ the r.v. with uniform distribution on C(N). Take a
linear extension σ and consider the associated region Rσ ⊆ C(N).

Given that µ ∈ Rσ, we know that µ(Sσ(k)) follows the distribution
of the kth order statistics on [0, 1]. It is known that the probability
density function f(k) of the kth order statistics on [0, 1] when the
underlying 2n − 2 random variables are i.i.d. and uniform is a Beta
distribution:

f(k)(u) = (2n−2)

(
2n − 3

k − 1

)
(1−u)2

n−2−kuk−1 = Beta(k, 2n + k −1)

25/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Uniform distribution of µ in C(N) does not mean that the
distribution of µ(S) for a given S is uniform!

Exact distribution of µ(S) seems to be very hard to obtain.

Denote by µ the r.v. with uniform distribution on C(N). Take a
linear extension σ and consider the associated region Rσ ⊆ C(N).

Given that µ ∈ Rσ, we know that µ(Sσ(k)) follows the distribution
of the kth order statistics on [0, 1]. It is known that the probability
density function f(k) of the kth order statistics on [0, 1] when the
underlying 2n − 2 random variables are i.i.d. and uniform is a Beta
distribution:

f(k)(u) = (2n−2)

(
2n − 3

k − 1

)
(1−u)2

n−2−kuk−1 = Beta(k, 2n + k −1)

25/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Uniform distribution of µ in C(N) does not mean that the
distribution of µ(S) for a given S is uniform!

Exact distribution of µ(S) seems to be very hard to obtain.

Denote by µ the r.v. with uniform distribution on C(N). Take a
linear extension σ and consider the associated region Rσ ⊆ C(N).

Given that µ ∈ Rσ, we know that µ(Sσ(k)) follows the distribution
of the kth order statistics on [0, 1]. It is known that the probability
density function f(k) of the kth order statistics on [0, 1] when the
underlying 2n − 2 random variables are i.i.d. and uniform is a Beta
distribution:

f(k)(u) = (2n−2)

(
2n − 3

k − 1

)
(1−u)2

n−2−kuk−1 = Beta(k, 2n + k−1)

25/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Denoting by OSk the corresponding cumulative distribution function, it
follows that for any S ∈ 2N \{∅,N}, the distribution Fµ(S)(α) is given by

Fµ(S)(α) = Pr(µ(S) 6 α) =
∑

σ∈E(2N\{∅,N})

Pr(µ(S) 6 α | µ ∈ Rσ)Pr(µ ∈ Rσ)

=
1

e(2N)

∑
σ∈E(2N\{∅,N})

Pr(µ(S) 6 α | µ ∈ Rσ)

=
1

e(2N)

∑
σ∈E(2N\{∅,N})

OSk(S ,σ)(α), (1)

where E (2N \ {∅,N}) is the set of permutations corresponding to linear
extensions, and k(S , σ) is such that S = Sσ(k).

26/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Distribution of µ(S)

Lemma

Assume µ is uniformly distributed and take ∅ 6= S ,S ′ ⊂ N. Then

1 µ(S) and µ(S ′) for |S | = |S ′| are identically distributed.

2 µ(S) and 1− µ(N \ S) are identically distributed.

27/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,4})μ({2,3}) μ({3,4})

μ({1,2,3}) μ({1,2,4}) μ({1,3,4}) μ({2,3,4})

Figure: Histograms of µ(S) for n = 4 and the exact method

28/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({1,2,3}) μ({1,2,4}) μ({1,3,4}) μ({2,3,4})

μ({3,4})μ({2,4})μ({2,3})

Figure: Histograms of µ(S) for n = 4 and the 2-layer approximation method

29/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,3}) μ({2,4}) μ({3,4})

μ({1,2,3}) μ({1,2,4}) μ({1,3,4}) μ({2,3,4})

Figure: Histograms of µ(S) for n = 4 and the Markov chain method

30/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,3}) μ({2,4}) μ({3,4})

μ({1,2,4}) μ({1,3,4}) μ({2,3,4})μ({1,2,3})

Figure: Histograms of µ(S) for n = 4 and the Random Node Generator

31/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)

centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!

We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ

Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.

The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.

centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

The centroid of C(N)

Idea: checking if the average over generated capacities = centroid c
of C(N) is a good measure of the homogeneity of repartition in C(N)
centroid of C(N) 6= barycenter of C(N) (=average of vertices)!
We must use the triangulation of C(N) into the regions Rσ in order
to compute the centroid c :

c =
∑

σ∈E(2N)

bσ

with bσ the barycenter of Rσ
Consequently, the exact centroid c can be computed for n 6 4 only.
The centroid inherits the properties of µ(S), i.e.,
c(N \ S) = 1− c(S) and c(S) depends on |S | only.
centroid for n = 3:

c = (0.298, 0.298, 0.298, 0.702, 0.702, 0.702).

centroid for n = 4:
c = (0.1810, 0.1810, 0.1810, 0.1810, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.8190, 0.8190, 0.8190, 0.8190).

32/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results

Idea: compare with the Markov chain method (asymptotically exact
when T tends to infinity), by choosing T so that the performance of
the 2-layer approximation method is approximately the same as the
one of the Markov chain method

When n 6 4, we take as performance the L1 distance between the
theoretical centroid and the obtained centroid. We obtain T = 1170.

When n > 4, we use the symmetry properties of the centroid (c(S)
depends only on |S |). The performance is measured by the standard
deviation of c(S) when |S | is constant. We obtain T = 9000 for
n = 5.

33/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results

Idea: compare with the Markov chain method (asymptotically exact
when T tends to infinity), by choosing T so that the performance of
the 2-layer approximation method is approximately the same as the
one of the Markov chain method

When n 6 4, we take as performance the L1 distance between the
theoretical centroid and the obtained centroid. We obtain T = 1170.

When n > 4, we use the symmetry properties of the centroid (c(S)
depends only on |S |). The performance is measured by the standard
deviation of c(S) when |S | is constant. We obtain T = 9000 for
n = 5.

33/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results

Idea: compare with the Markov chain method (asymptotically exact
when T tends to infinity), by choosing T so that the performance of
the 2-layer approximation method is approximately the same as the
one of the Markov chain method

When n 6 4, we take as performance the L1 distance between the
theoretical centroid and the obtained centroid. We obtain T = 1170.

When n > 4, we use the symmetry properties of the centroid (c(S)
depends only on |S |). The performance is measured by the standard
deviation of c(S) when |S | is constant. We obtain T = 9000 for
n = 5.

33/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

A quantitative comparison is done by the Kullback-Leibler
divergence.

Given two discrete probability distributions p, q on the same universe
X , the Kullback-Leibler divergence is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

The smaller the value, the closer are the two distributions.

Distributions of µ(S) are discretized with δ = 0.01 on [0, 1]. We call
µMC (S), µ2L(S) the discrete distributions obtained by the Markov
chain method and the 2-layer approximation, respectively.

34/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

A quantitative comparison is done by the Kullback-Leibler
divergence.

Given two discrete probability distributions p, q on the same universe
X , the Kullback-Leibler divergence is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

The smaller the value, the closer are the two distributions.

Distributions of µ(S) are discretized with δ = 0.01 on [0, 1]. We call
µMC (S), µ2L(S) the discrete distributions obtained by the Markov
chain method and the 2-layer approximation, respectively.

34/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

A quantitative comparison is done by the Kullback-Leibler
divergence.

Given two discrete probability distributions p, q on the same universe
X , the Kullback-Leibler divergence is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

The smaller the value, the closer are the two distributions.

Distributions of µ(S) are discretized with δ = 0.01 on [0, 1]. We call
µMC (S), µ2L(S) the discrete distributions obtained by the Markov
chain method and the 2-layer approximation, respectively.

34/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

With n 6 4, q is the exact distribution and p is the distribution to
be tested. We compute

S4
KL(µMC) =

∑
S∈2N

DKL(µMC (S)||µ(S))

S4
KL(µ2L) =

∑
S∈2N

DKL(µ2L(S)||µ(S))

With n > 4, we use symmetry properties of the distributions. We
compute

SN
KL(µMC) =

∑
S ,S ′∈2N s.t. |S|=|S ′|DKL(µMC (S)||µMC (S ′))

SN
KL(µ2L) =

∑
S,S ′∈2N s.t. |S |=|S ′|DKL(µ2L(S)||µ2L(S ′))

Results

S4
KL(µMC) S4

KL(µ2L) S5
KL(µMC) S5

KL(µ2L)

0.061 0.059 2.41 2.24

35/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

With n 6 4, q is the exact distribution and p is the distribution to
be tested. We compute

S4
KL(µMC) =

∑
S∈2N

DKL(µMC (S)||µ(S))

S4
KL(µ2L) =

∑
S∈2N

DKL(µ2L(S)||µ(S))

With n > 4, we use symmetry properties of the distributions. We
compute

SN
KL(µMC) =

∑
S ,S ′∈2N s.t. |S|=|S ′|DKL(µMC (S)||µMC (S ′))

SN
KL(µ2L) =

∑
S,S ′∈2N s.t. |S |=|S ′|DKL(µ2L(S)||µ2L(S ′))

Results

S4
KL(µMC) S4

KL(µ2L) S5
KL(µMC) S5

KL(µ2L)

0.061 0.059 2.41 2.24

35/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Comparison of distributions

With n 6 4, q is the exact distribution and p is the distribution to
be tested. We compute

S4
KL(µMC) =

∑
S∈2N

DKL(µMC (S)||µ(S))

S4
KL(µ2L) =

∑
S∈2N

DKL(µ2L(S)||µ(S))

With n > 4, we use symmetry properties of the distributions. We
compute

SN
KL(µMC) =

∑
S ,S ′∈2N s.t. |S|=|S ′|DKL(µMC (S)||µMC (S ′))

SN
KL(µ2L) =

∑
S,S ′∈2N s.t. |S |=|S ′|DKL(µ2L(S)||µ2L(S ′))

Results

S4
KL(µMC) S4

KL(µ2L) S5
KL(µMC) S5

KL(µ2L)

0.061 0.059 2.41 2.24

35/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Experimental results: Computation time

Comparison of CPU time (s) for generating 10,000 capacities (3.2 GHz
PC with 16 GB of RAM)

Method n = 4 n = 5 n = 6 n = 7

2 layer approximation 2.58 11.51 60.06 330.17

Markov Chain CPU time 20.46 161.33 ≈ 1500 ≈ 9000
T 1170 9000 80,000 500,000

36/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Concluding remarks

The problem of generating capacities according to a uniform
distribution amounts to generate all linear extensions of 2N

It is intractable as soon as n > 5

Naive methods yield poor results

Good methods try to generate a representative sample of linear
extensions: Markov chain method, 2-layer approximation

The Markov chain method and the 2-layer approximation method
yield similar results, with high accuracy.

The 2-layer approximation method is much faster.

37/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

Thank you for your attention!

38/38 M. Grabisch, Ch. Labreuche and P. Sun c©2022 Random generation of capacities

