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Recent results on FMs

• Hierarchies and Möbius representation

1. G. Beliakov, M. Gagolewski and S. James. Hierarchical data fusion
processes involving the Möbius representation of capacities. Fuzzy
Sets and Systems, 433: 1-21, 2022

• Antibuoyancy

2 G. Beliakov and S. James. Choquet integral optimisation with
constraints and the buoyancy property for fuzzy measures.
Information Sciences. 578: 22–36, 2021

3 G. Beliakov and S. James. Choquet integral based measures of
economic welfare and species diversity. International Journal of
Intelligent Systems. 37 (4): 2849 - 2867, 2022



Hierarchical FMs



Hierarchical FMs - background
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The relationship between certain hierarchical aggregation
structures and fuzzy measures has been investigated by
Mesiar et al. and Sugeno et al. in the 1990s.



Hierarchical FMs

Proposition

Consider an input vector x = (x1, . . . , xn) and a covering
{A1, . . . ,Am}, i.e., one for which Ai ̸= ∅ for all i and

⋃m
i=1 Ai = N.

For any weighted arithmetic mean of Choquet integrals Cµ(1)(xA1),
Cµ(2)(xA2), . . . ,Cµ(m)(xAm) there exists an equivalent single Choquet
integral Cµ(x).

→ some complex Choquet integrals can be represented as a WAM of
Choquet integrals in order to reduce variables and fitting constraints.



Hierarchical FMs

Some simplified FMs can be interpreted in the hierarchical framework,
e.g. k-intolerant (ordered hierarchy)
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Hierarchical FMs

k-lower interactive
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Hierarchical FMs

Partition
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Hierarchical FMs

Overlapping Hierarchy
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Hierarchical FMs

Unidentified parameters (var) and constraints (constr) required for
hierarchical fuzzy measures based on partitions with disjoint subsets
of at most cardinality k

n = 5 n = 10 n = 100
k var constr var constr var constr

1 5 5 10 10 100 100
2 7 9 15 20 150 200
3 10 16 22 37 232 397
4 16 33 33 68 375 800
5 31 80 62 160 620 1600
10 1023 5120 10230 51200



Hierarchical FMs

Other Hierarchies
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Hierarchical FMs - Fitting comparison

n = 5, 100 experiments, fitting to a vertices of a randomly generated
FM (linear extension method), L1 error

operator v mon av L1 error
WAM 5 - 0.4015 (0.073)
OWA 5 - 0.3370 (0.053)

WAM+OWA 10 - 0.2595 (0.039)
2-add 15 75 0.2802 (0.079)
1-lo int 10 25 0.2629 (0.051)
2-lo int 20 55 0.1233 (0.035)

Random subsets
v mon av L1 error
8 11.2 0.3336 (0.067)
10 20.1 0.2991 (0.063)
15 41.3 0.2231 (0.053)
20 57.7 0.1542 (0.043)
25 68.0 0.0935 (0.036)

* Preliminary Experiments, not published



Random Subsets - Potential use

Random Forest / Genetic Algorithm - type processes, e.g.

First, learn multiple FMs with the non-zero subsets chosen randomly
(other than 1..n)

• Learn the best FM from the data with these as a basis

• Randomly Combine or take a WAM based on error to obtain an
overall FM



Antibuoyant FMs



Anbtibuoyant FMs - background

Buoyancy/Antibuoyancy is terminolgoy adopted for OWA
(Yager 1993)

→ Buoyant means weights are non-increasing (largest weight applied
to the largest input)

When antibuoyant OWA are used for Welfare indices (e.g. Aristondo
et al. 2013), the corresponding measures satisfy the Pigou Dalton
principle – i.e., if the inputs are incomes, then any proportional
transfer of wealth from richer to poorer should increase overall welfare



Anbtibuoyant FMs - background

In [2], we extended this definition to FMs, e.g.
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Antibuoyant FMs

This extension has a few nice implications

• As far as we are aware, this is the first non-symmetric function to
be proposed satisfying the Pigou Dalton principle
◦ The idea of non-symmetric functions satisfying PD had mainly been

approached using concavity – increases to smaller affect output more
than decreases to larger input – but corresponding supermodular FMs
are not necessarily antibuoyant and may violate PD so concavity ̸=
antibuoyancy

◦ The PD idea is important not only in economics but also ecology
(species diversity)

• If the objective function is defined by an antibuoyant FM,
only need to look on one simplex to find the optimum point



Antibuoyant FMs - Learning

Fitting in general requires a large number of constraints

n variables monotonicity antibuoyancy

2 2 4 2
3 6 12 12
4 14 32 48
5 30 80 160
6 62 192 480
7 126 448 1344
8 254 1024 3584
9 510 2304 9216
10 1022 5120 23040



Antibuoyant FMs - Learning

We have proposed an approximate fitting method using vertices of
the antibuoyant polytope. There are more vertices than there are for
the general FMs polytope, however we defined one type that is
p-symmetric and can be generated algorithmically.
e.g. a reference set A = {1, 2, 3} for n = 5

|B ∩ A′|

|B ∩ A|
0 1 2 3

0 0 0 0 0
1 1/16 1/8 1/4 1/2
2 7/32 3/8 5/8 1



Anbtibuoyant FMs - background

Another example, A = {1} and n = 3
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Antibuoyant FMs - Learning

• Such antibuoyant vertices can also be used to generate random
antibuoyant FMs

• Generating antibuoyant FMs based on a linear extension method
tends toward FMs closer to the minimum – so we also looked at
augmenting these with the symmetric and additive FM to test
fitting performance.
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