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CHALLENGES

▶ Capacities involve 2n parameters, computational
challenges, interpreting and assigning values

▶ Even under simplifications k-order capacities, interpreting
Mobius values, ensuring constraints

▶ Learning capacities: are there enough data?
▶ Tools for operating with capacities (user-friendly)
▶ Broadening the area of their applications, large universes
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RESEARCH PROBLEMS

▶ Using fuzzy integrals in optimisation
▶ Replacing linear objectives with Choquet integral to

account for dependencies
▶ Linear → nonlinear, but with some structure. For some

types of capacities can be solved as LP
▶ Mixed integer programming with Choquet integral (eg

knapsack)
▶ Repace linear constraints with Choquet
▶ Non-convex capacities - Difference of convex, other NLP

methods

▶ Multiobjective optimisation : scalarising functions
▶ Applications in MCDM: Modelling with capacities and

their alternatives
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SOME THINGS WE HAVE DONE

▶ Optimising Choquet integrals instead of LPs
▶ Special types of capacities (anti-bouoyant ⊂

supermodular)
▶ Choquet integral as the objective in knapsack
▶ DC programming
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CONVEX CAPACITIES

▶ I will go through various related but distinct cases:
▶ Convex capacities (and Choquet integrals)
▶ Convex k-additive for larger problems
▶ Convex general, how to fight exponential complexity
▶ Integer programming (knapsack)
▶ non-convex: DC optimisation
▶ In all cases Choquet integral is a piecewise linear function

with a particular structure (linear on elements of simplicial
partition)
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CONVEX CAPACITIES

▶ Supermodular capacities
▶ The Choquet integral is a concave function

maximise C(x) =
∑

A⊆N
m(A)minA(x) (1)

subject to Cx ≤ d.

▶ In addition we use k-additive capacities

maximise
∑

A:a≤k
m(A)TA (2)

subject to Cx ≤ d,
xj ≥ TA,∀j ∈ A, A ⊆ N,

a ≤ k.
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CONVEX CAPACITIES

▶ Supermodular 2-additive capacities
▶

maximise
∑

i
m({i})xi +

∑
i,j:i>j

m({i, j})Tij (3)

subject to Cx ≤ d,
xj ≥ Tij for all i, j ∈ N, i > j
xi ≥ Tij for all i, j ∈ N, i > j.

▶ When some of the variables are independent (i.e., the
respective m({i, j}) = 0), it is straightforward to
incorporate this knowledge into (3) by simply excluding
the corresponding variables Tij and constraints. That is,
sparsity of the problem can be accommodated to reduce
the cost of the solution.
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CONVEX CAPACITIES

▶ Technically this is achievable for even some large n.
▶ The challenge is a) formulations for some practical

problems b) identifying the capacity parameters (pairwise
interactions)
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BUOUYANCY PROPERTY

Context: general supermodular capacities. Challenge: problem
size.

Definition
A weighting vector w,

n∑
i=1

wi = 1,wi ≥ 0 associated with an

OWA function is said to be buoyant if wi ≥ wj whenever i < j.

▶ A weighting vector associated with an OWA operator is
buoyant if and only if it is equivalent to a symmetric and
submodular fuzzy measure.

Definition
A fuzzy measure µ is buoyant if all ordered weighting vectors
wσ associated with µ are buoyant. A fuzzy measure is
antibuoyant if all ordered weighting vectors are antibuoyant.
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BUOUYANCY PROPERTY
▶ In terms of the set function discrete derivatives, Definition

2 amounts to buoyant fuzzy measures satisfying:

∆i(A∪{i, j}) ≤ ∆j(A∪{j}) for all A ⊆ N\{i, j} and pairs i, j ̸∈ A.

▶ The discrete derivatives are decreasing with set cardinality.
▶ A fuzzy measure that is buoyant is necessarily

submodular.
▶ For an antibuoyant fuzzy measure, the symmetric

(additive) capacity is in its core. For a buoyant fuzzy
measure the symmetric capacity is in its anti-core.

▶ A fuzzy measure µ is antibuoyant if and only if every
reduced fuzzy measure µT\S has the symmetric additive
capacity on T \ S in its core.

▶ The Choquet integral is consistent with the Pigou-Dalton
principle (of progressive transfers) if and only if the fuzzy
measure is antibuoyant.
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BUOUYANCY PROPERTY
▶ We solve the problem for a supermodular capacity:

maximise Cµ(x) (4)

s.t.
n∑

j=1
aj,ixi ≤ 1, j = 1, . . . ,m.

▶ Reformulate as a large separable LP (or a set of LPs)

maximise min
σ∈Pn

n∑
i=1

wσ
i xi (5)

s.t.
n∑

i=1
aixi ≤ 1,

maximise T (6)

s.t. T ≤
n∑

i=1
wσ

i xi,∀σ ∈ Pn

n∑
i=1

aixi ≤ 1,

▶ For anti-bouoyant capacities the constrained problem (5)
can be found by restricting the feasible domain to the
simplex S1. It implies that we fix the permutation σ and
translate (5) to

maximise
n∑

i=1
w1

i xi (7)

s.t.
n∑

i=1
aixi ≤ 1,

x ∈ S1,
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BUOUYANCY PROPERTY
▶ For anti-bouoyant capacities the constrained problem (5) is

solved by restricting the feasible domain to S1. It implies
that we fix the permutation σ and translate (5) to

maximise
n∑

i=1
w1

i xi (8)

s.t.
n∑

i=1
aixi ≤ 1,

x ∈ S1,

▶ It then suffices to identify the order in which the
coefficients ai of the constraint form a non-decreasing
sequence, relabel accordingly the variables and solve (8).

▶ The case of several comonotone constraints is treated in
the same way as one single constraint.

▶ It is also a relaxation of the knapsack problem (MIP), and
can provide putative solutions. 12 / 20
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KNAPSACK
▶ Quadratic knapsack

maximise
n∑

i=1
vixi +

n∑
i,j=1,j>i

aijxixj (9)

subject to
n∑

i=1
cixi ≤ C

xi ∈ {0, 1}.

▶ Pseudo-Boolean extension - knapsask

maximise Extµ(x) =
∑

A⊆N
m(A)hA(x) (10)

subject to
n∑

i=1
cixi ≤ C

xi ∈ Di.
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KNAPSACK
▶ Choquet integral (Lovasz extension)

maximise Cµ(x) =
∑

A⊆N
m(A)TA (11)

subject to
n∑

i=1
cixi ≤ C

TA ≤ xi, ∀i ∈ A and ∀A ⊆ N
xi ∈ Di.

▶ For 2-additive capacities the problem (11) translates into

maximise
∑

i
m({i})xi +

∑
i,j:i>j

m({i, j})Tij (12)

subject to
n∑

i=1
cixi ≤ C

xi ≥ Tij for all i, j ∈ N, i > j
xj ≥ Tij for all i, j ∈ N, i > j

xi ∈ Di. 14 / 20
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KNAPSACK

▶ Advantages:
▶ It is a standard MIP with plenty of modern computational

tools
▶ We can easily extend it to k-additive (unlike quadratic

knapsack)
▶ We are not restricted to 0-1 variables (Choquet is

homogeneous function)
▶ We can accommodate sparse general supermodular

capacities
▶ We can add more linear constraints if needed
▶ can further restrict the class of capacities (anti-bouoyant,

k-interactive)
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DIFFERENCE OF CONVEX
▶ Consider the general optimisation problem. By replacing

the linear objective with the Choquet integral we have

maximise C(x) =
∑

A⊆N
m(A)minA(x) (13)

subject to Cx ≤ d.

▶ The capacity is general (not sub/super modular)
▶ We will use a decomposition of f into the sum (or average)

of a concave g and a convex h functions

f (x) =
1
2
(g(x) + h(x)).

▶ The class of DC functions includes piecewise linear
functions, hence such a decomposition of the Choquet
integral is always possible. Any capacity can be written as
a weighted sum of a supermodular and a submodular
capacities
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DIFFERENCE OF CONVEX

▶ Optimise the average of concave and convex Choquet
integrals,

C(x) = 1
2
(Cµ(x) + Cν(x)). (14)

▶ Multiple locally optimal solutions, try to converge to one
of them

▶ Algorithm DCA.
Input: starting point x0 and k = 0
While convergence criteria not met do:

1. Compute y ∈ ∂Cν(xk).
2. Solve z = argmaxx Cµ(x) + ⟨x,y⟩ for a fixed y.
3. Set xk = z and k = k + 1.
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DIFFERENCE OF CONVEX
▶ Here ∂Cν denotes the Clarke’s subdifferential of Cν , so that

y is any of its subgradients.
▶ The convergence criteria involve reaching a given

threshold on pairwise difference of the optima of two
iterations.

▶ The problem at step 2 is a linear programming problem,
which in the case of 2-additive capacities simplifies to (12).

▶ Step 1 requires calculation of any subgradient of a
piecewise linear convex function Cν . By taking one-sided
derivatives :

yi = mν({i}) + mν(A)δ(xi,A)

with δ(xi,A) = 1/b if xi = minA(x), B = {j : xj = minA(x)}
and 0 otherwise. Note that ⟨x,y⟩ ≤ Cν(x) which can be
established by analysing the subdifferential of the function
minA(x).
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DIFFERENCE OF CONVEX

▶ The LPs at step 2 in different iterations of the DCA differ
only by some of the coefficients in the linear objective. It
means that from the practical implementation point of
view one can avoid the overheads associated with setting
up problem, and only modify its objective, which will lead
to significant savings.

▶ There are many generic methods for solving the NLP. An
important challenge is a large number of constraints on the
decision variables x. The DC approach was designed to
use linear programming at the inner step of the DCA,
because LP methods successfully handle many thousands
of constraints and take advantage of their sparsity.

▶ We built a tool for solving such DCA, now setting up
computational experiments, study scalability.
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CONCLUSIONS

▶ For special types of capacities using Chquet integral
amounts to solving one or a sequence of LPs, hence the
approach appears to be scalable

▶ For MIP, like knapsack problem we reduced the problem
to classical MIP formulation/and hence numerical tools

▶ For non-convex objectives we have the DC algorithm,
which seems to be quite efficient, although converges
locally.

▶ An important issue is the potentially large number of
linear constraints, most likely sparse constraints. Hence
the reduction of the NLPs to sequential LPs or linear MIPs
brings an advantage of utilising proven free and
commercial libraries.
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